CD133mAb conjugation (CD133-C) hastens in vivo recellularization of decellularized porcine heart valve scaffolds when placed in the pulmonary position of sheep. We now characterize this early cellularization process 4 h, 3, 7, 14, 30, or 90 days post-implantation. Quantitative immunohistochemistry identified cell types as well as changes in cell markers and developmental cues. CD133(+)/CD31(-) cells adhered to the leaflet surface of CD133-C leaflets by 3 days and transitioned to native leaflet-like CD133(-)/CD31(+) cells by 30 days. Leaflet interstitium became increasingly populated with both alpha-smooth muscle actin (αSMA) and vimentin(+) cells from 14 to 90 days post-implantation. Wnt3a, and beta-catenin proteins were expressed at early (3-14 days) but not later (30-90 days) time points. In contrast, matrix metalloproteinase-2 and periostin proteins were increasingly expressed over 90 days. Thus, early development of CD133-C constructs includes a fairly rapid transition from a precursor cell adhesion/migration/transdifferentiation phenotype to a more mature cell/native valve-like matrix metabolism phenotype.
Keywords: CD133; Cell signaling; Endothelial precursor cells; Matrix; Remodeling; Sheep; Transdifferentiation; Valve interstitial cells.