A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair

J Biomater Appl. 2016 Jan;30(6):873-85. doi: 10.1177/0885328215604069. Epub 2015 Sep 4.

Abstract

The aim was to develop a hybrid three-dimensional-tissue engineering construct for chondrogenesis. The hypothesis was that they support chondrogenesis. A biodegradable, highly porous polycaprolactone-grate was produced by solid freeform fabrication. The polycaprolactone support was coated with a chitosan/polyethylene oxide nanofibre sheet produced by electrospinning. Transforming growth factor-β3-induced chondrogenesis was followed using the following markers: sex determining region Y/-box 9, runt-related transcription factor 2 and collagen II and X in quantitative real-time polymerase chain reaction, histology and immunostaining. A polycaprolactone-grate and an optimized chitosan/polyethylene oxide nanofibre sheet supported cellular aggregation, chondrogenesis and matrix formation. In tissue engineering constructs, the sheets were seeded first with mesenchymal stem cells and then piled up according to the lasagne principle. The advantages of such a construct are (1) the cells do not need to migrate to the tissue engineering construct and therefore pore size and interconnectivity problems are omitted and (2) the cell-tight nanofibre sheet and collagen-fibre network mimic a cell culture platform for mesenchymal stem cells/chondrocytes (preventing escape) and hinders in-growth of fibroblasts and fibrous scarring (preventing capture). This allows time for the slowly progressing, multiphase true cartilage regeneration.

Keywords: Scaffold; cartilage; chitosan; chondrogenesis; nanofibres; rapid prototyping.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cartilage, Articular / cytology
  • Cartilage, Articular / growth & development*
  • Cell Aggregation / physiology
  • Cell Differentiation / physiology
  • Cell Line
  • Chondrocytes / cytology*
  • Chondrocytes / physiology
  • Chondrogenesis / physiology*
  • Equipment Design
  • Equipment Failure Analysis
  • Guided Tissue Regeneration / instrumentation
  • Humans
  • Materials Testing
  • Mesenchymal Stem Cells / cytology*
  • Mesenchymal Stem Cells / physiology
  • Nanofibers / chemistry
  • Polyesters / chemistry
  • Printing, Three-Dimensional
  • Tissue Engineering / instrumentation*
  • Tissue Engineering / methods
  • Tissue Scaffolds*

Substances

  • Polyesters
  • polycaprolactone