Comparison of Cardiorespiratory and Metabolic Responses in Kettlebell High-Intensity Interval Training Versus Sprint Interval Cycling

J Strength Cond Res. 2015 Dec;29(12):3317-25. doi: 10.1519/JSC.0000000000001193.


The purpose of this study was to determine the effectiveness of a novel exercise protocol we developed for kettlebell high-intensity interval training (KB-HIIT) by comparing the cardiorespiratory and metabolic responses to a standard sprint interval cycling (SIC) exercise protocol. Eight men volunteered for the study and completed 2 preliminary sessions, followed by two 12-minute sessions of KB-HIIT and SIC in a counterbalanced fashion. In the KB-HITT session, 3 circuits of 4 exercises were performed using a Tabata regimen. In the SIC session, three 30-second sprints were performed, with 4 minutes of recovery in between the first 2 sprints and 2.5 minutes of recovery after the last sprint. A within-subjects' design over multiple time points was used to compare oxygen consumption (V[Combining Dot Above]O2), respiratory exchange ratio (RER), tidal volume (TV), breathing frequency (f), minute ventilation (VE), caloric expenditure rate (kcal·min), and heart rate (HR) between the exercise protocols. Additionally, total caloric expenditure was compared. A significant group effect, time effect, and group × time interaction were found for V[Combining Dot Above]O2, RER, and TV, with V[Combining Dot Above]O2 being higher and TV and RER being lower in the KB-HIIT compared with the SIC. Only a significant time effect and group × time interaction were found for f, VE, kcal·min, and HR. Additionally, total caloric expenditure was found to be significantly higher during the KB-HIIT. The results of this study suggest that KB-HIIT may be more attractive and sustainable than SIC and can be effective in stimulating cardiorespiratory and metabolic responses that could improve health and aerobic performance.

Publication types

  • Comparative Study

MeSH terms

  • Energy Metabolism / physiology
  • Heart Rate / physiology
  • Humans
  • Male
  • Oxygen Consumption / physiology
  • Physical Conditioning, Human / methods*
  • Resistance Training / methods*
  • Respiratory Rate / physiology
  • Tidal Volume / physiology
  • Young Adult