Synthesis of colloidal InSb nanocrystals via in situ activation of InCl3

Dalton Trans. 2015 Oct 14;44(38):16923-8. doi: 10.1039/c5dt02181b. Epub 2015 Sep 11.

Abstract

Indium antimonide (InSb), a narrow band gap III-V semiconductor is a promising infrared-active material for various optoelectronic applications. Synthetic challenge of colloidal InSb nanocrystals (NCs) lies in the limited choice of precursors. Only a few successful synthetic schemes involving highly toxic stibine (SbH3) or air- and moisture-sensitive metal silylamides (In[N(Si-(Me)3)2]3 or Sb[N(Si-(Me)3)2]3) as the precursor have been reported. We found that commercially available precursors InCl3 and Sb[NMe2]3 directly form highly crystalline colloidal InSb nanocrystals in the presence of a base such as LiN(SiMe3)2 or nBuLi. The mean size of the particles can be controlled by simply changing the activating base. This approach offers a one-pot synthesis of InSb NCs from readily available chemicals without the use of complex organometallic precursors.