Allosteric regulation, the most direct and efficient way of regulating protein function, is induced by the binding of a ligand at one site that is topographically distinct from an orthosteric site. Allosteric Database (ASD, available online at http://mdl.shsmu.edu.cn/ASD) has been developed to provide comprehensive information featuring allosteric regulation. With increasing data, fundamental questions pertaining to allostery are currently receiving more attention from the mechanism of allosteric changes in an individual protein to the entire effect of the changes in the interconnected network in the cell. Thus, the following novel features were added to this updated version: (i) structural mechanisms of more than 1600 allosteric actions were elucidated by a comparison of site structures before and after the binding of an modulator; (ii) 261 allosteric networks were identified to unveil how the allosteric action in a single protein would propagate to affect downstream proteins; (iii) two of the largest human allosteromes, protein kinases and GPCRs, were thoroughly constructed; and (iv) web interface and data organization were completely redesigned for efficient access. In addition, allosteric data have largely expanded in this update. These updates are useful for facilitating the investigation of allosteric mechanisms, dynamic networks and drug discoveries.
© The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.