Single-mode lasers and parity-time symmetry broken gratings based on active dielectric-loaded long-range surface plasmon polariton waveguides

Opt Express. 2015 Jul 27;23(15):19922-31. doi: 10.1364/OE.23.019922.

Abstract

Single-mode distributed feedback laser structures and parity-time symmetry broken grating structures based on dielectric-loaded long-range surface plasmon polariton waveguides are proposed. The structures comprise a thin Ag stripe on an active polymer bottom cladding with an active polymer ridge. The active polymer assumed is PMMA doped with IR140 dye providing optical gain at near infrared wavelengths. Cutoff top ridge dimensions (thickness and width) are calculated using a finite element method and selected to guarantee single-mode operation of the laser. Several parameters such as the threshold number of periods and the lasing wavelength are determined using the transfer matrix method. A related structure based on two pairs of waveguides of two widths, which have the same imaginary part but different real part of effective index, arranged within one grating period, is proposed as an active grating operating at the threshold for parity-time symmetry breaking (i.e., operating at an exceptional point). Such "exceptional point" gratings produce ideal reflectance asymmetry as demonstrated via transfer matrix computations.