An imbalance between energy intake and energy expenditure is the primary etiology for excess weight gain. Increased energy expenditure via exercise and energy restriction via diet are commonly used approaches to induce weight loss. Such behavioral interventions, however, have generally resulted in a smaller than expected weight loss, which in part has been attributed to compensatory adaptations in other components contributing to energy balance. Current research points to a loose coupling between energy intake and energy expenditure on a daily basis, and evidence for long-term adaptations has been inconsistent. The lack of conclusive evidence on compensatory adaptations in response to alterations in energy balance can be attributed to differences in intervention type and study population. Physical activity (PA) levels may be reduced in response to aerobic exercise but not in response to resistance exercise. Furthermore, athletic and lean adults have been shown to increase their energy intake in response to exercise, whereas no such response was observed in obese adults. There is also evidence that caloric restriction is associated with a decline in PA. Generally, humans seem to be better equipped to defend against weight loss than avoid weight gain, but results also show a large individual variability. Therefore, individual differences rather than group means should be explored to identify specific characteristics of "compensators" and "noncompensators." This review emphasizes the need for more research with simultaneous measurements of all major components contributing to energy balance to enhance the understanding of the regulation of energy balance, which is crucial to address the current obesity epidemic.
Keywords: body composition; caloric restriction; energy intake; exercise; nonexercise activity thermogenesis; physical activity.
© 2015 American Society for Nutrition.