Spatial and temporal coordination of insulin granule exocytosis in intact human pancreatic islets

Diabetologia. 2015 Dec;58(12):2810-8. doi: 10.1007/s00125-015-3747-9. Epub 2015 Sep 16.


Aims/hypothesis: Insulin secretion is widely studied because it plays a central role in glucose homeostasis and diabetes. Processes from insulin granule fusion in beta cells to in vivo insulin secretion have been elucidated, but data at the cellular level do not fully account for several aspects of the macroscopic secretory pattern. Here we investigated how individual secretory events are coordinated spatially and temporally within intact human islets.

Methods: We used the fluorescent probe neuropeptide Y (NPY)-pHluorin to visualise insulin granule secretion in isolated intact human islets.

Results: We found that individual beta cells respond to increases in glucose concentration by releasing insulin granules in very discrete bursts with periods consistent with in vivo pulsatile insulin secretion. In successive secretory bursts during prolonged exposure to high glucose levels, secretory events progressively localised to preferential release sites, coinciding with the transition to second phase insulin secretion. Granule secretion was very synchronised in neighbouring beta cells, forming discrete regional clusters of activity.

Conclusions/interpretation: These results reveal how individual secretory events are coordinated to produce pulsatile insulin secretion from human islets.

Keywords: Exocytosis; Human islets; Insulin granule; Pulsatile secretion.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Cells, Cultured
  • Cytoplasmic Granules / metabolism
  • Exocytosis / drug effects*
  • Female
  • Glucose / pharmacology
  • Green Fluorescent Proteins
  • Humans
  • Insulin / metabolism
  • Insulin Secretion
  • Insulin-Secreting Cells / metabolism
  • Islets of Langerhans / anatomy & histology
  • Islets of Langerhans / drug effects
  • Islets of Langerhans / metabolism*
  • Male
  • Middle Aged
  • Neuropeptide Y / metabolism


  • Insulin
  • Neuropeptide Y
  • Green Fluorescent Proteins
  • Glucose