Prostaglandin E receptor 4 (EP4) promotes colonic tumorigenesis

Oncotarget. 2015 Oct 20;6(32):33500-11. doi: 10.18632/oncotarget.5589.


Colorectal cancer (CRC) continues to be a major cause of morbidity and mortality. Although the factors underlying CRC development and progression are multifactorial, there is an important role for tumor-host interactions, especially interactions with myeloid cells. There is also increasing evidence that cyclooxygenase-derived prostaglandins are important mediators of CRC development and growth. Although prevention trials with either nonselective NSAIDs or COX-2 selective agents have shown promise, the gastrointestinal or cardiovascular side effects of these agents have limited their implementation. The predominant prostaglandin involved in CRC pathogenesis is PGE2. Since myeloid cells express high levels of the PGE2 receptor subtype, EP4, we selectively ablated EP4 in myeloid cells and studied adenoma formation in a mouse model of intestinal adenomatous polyposis, ApcMin/+ mice. ApcMin/+mice with selective myeloid cell deletion of EP4 had marked inhibition of both adenoma number and size, with associated decreases in mTOR and ERK activation. Either genetic or pharmacologic inhibition of EP4 receptors led to an anti-tumorigenic M1 phenotype of macrophages/dendritic cells. Therefore, PGE2-mediated EP4 signaling in myeloid cells promotes tumorigenesis, suggesting EP4 as a potentially attractive target for CRC chemoprevention or treatment.

Keywords: cyclooxygenase-2; myeloid cells; polarization; tumor growth.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Carcinogenesis / metabolism*
  • Carcinogenesis / pathology
  • Colorectal Neoplasms / genetics
  • Colorectal Neoplasms / metabolism*
  • Colorectal Neoplasms / pathology
  • Cyclooxygenase 2 / metabolism
  • Disease Models, Animal
  • Female
  • MAP Kinase Signaling System
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Myeloid Cells / pathology
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins c-akt / antagonists & inhibitors
  • Proto-Oncogene Proteins c-akt / metabolism
  • RAW 264.7 Cells
  • Receptors, Prostaglandin E, EP4 Subtype / deficiency
  • Receptors, Prostaglandin E, EP4 Subtype / genetics
  • Receptors, Prostaglandin E, EP4 Subtype / metabolism*
  • TOR Serine-Threonine Kinases / metabolism


  • Ptger4 protein, mouse
  • Receptors, Prostaglandin E, EP4 Subtype
  • Ptgs2 protein, mouse
  • Cyclooxygenase 2
  • Phosphatidylinositol 3-Kinases
  • TOR Serine-Threonine Kinases
  • mTOR protein, mouse
  • Proto-Oncogene Proteins c-akt