Laser-shock compression of magnesium oxide in the warm-dense-matter regime

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):023103. doi: 10.1103/PhysRevE.92.023103. Epub 2015 Aug 17.

Abstract

Magnesium oxide has been experimentally and computationally investigated in the warm-dense solid and liquid ranges from 200 GPa to 1 TPa along the principal Hugoniot. The linear approximation between shock velocity and particle velocity is validated up to a shock velocity of 15 km/s from the experimental data, this suggesting that the MgO B1 structure is stable up to the corresponding shock pressure of ∼350 GPa. Moreover, our Hugoniot data, combined with ab initio simulations, show two crossovers between MgO Hugoniot and the extrapolation of the linear approximation line, occurring at a shock pressures of approximately 350 and 650 GPa, with shock temperatures of 8000 and 14,000 K, respectively. These crossover regions are consistent with the solid-solid (B1-B2) and the solid-liquid (B2-melt) phase boundaries predicted by the ab initio calculations.