Effects of Reducing Suppressors of Cytokine Signaling-3 (SOCS3) Expression on Dendritic Outgrowth and Demyelination after Spinal Cord Injury

PLoS One. 2015 Sep 18;10(9):e0138301. doi: 10.1371/journal.pone.0138301. eCollection 2015.

Abstract

Suppressors of cytokine signaling-3 (SOCS3) is associated with limitations of nerve growth capacity after injury to the central nervous system. Although genetic manipulations of SOCS3 can enhance axonal regeneration after optic injury, the role of SOCS3 in dendritic outgrowth after spinal cord injury (SCI) is still unclear. The present study investigated the endogenous expression of SOCS3 and its role in regulating neurite outgrowth in vitro. Interleukin-6 (IL-6) induces SOCS3 expression at the mRNA and protein levels in neuroscreen-1 (NS-1) cells. In parallel to SOCS3 expression, IL-6 induced tyrosine phosphorylation of signal transducer and activator of transcription 3 (STAT3) in NS-1 cells. Lentiviral delivery of short hairpin RNA (shSOCS3) (Lenti-shSOCS3) to decrease SOCS3 expression into NS-1 cells enhanced IL-6-induced tyrosine phosphorylation of STAT3 (P-STAT3 Tyr705) and promoted neurite outgrowth. In addition, we determined if reduction of SOCS3 expression by microinjection of Lenti-shSOCS3 into spinal cord enhances dendrite outgrowth in spinal cord neurons after SCI. Knocking down of SOCS3 in spinal cord neurons with Lenti-shSOCS3 increased complete SCI-induced P-STAT3 Tyr705. Immunohistochemical analysis showed that complete SCI induced a significant reduction of microtubule association protein 2-positive (MAP-2+) dendrites in the gray and white matter at 1 and 4 weeks after injury. The SCI-induced reduction of MAP-2+ dendrites was inhibited by infection with Lenti-shSOCS3 in areas both rostral and caudal to the lesion at 1 and 4 weeks after complete SCI. Furthermore, shSOCS3 treatment enhanced up-regulation of growth associated protein-43 (GAP-43) expression, which co-localized with MAP-2+ dendrites in white matter and with MAP-2+ cell bodies in gray matter, indicating Lenti-shSOCS3 may induce dendritic regeneration after SCI. Moreover, we demonstrated that Lenti-shSOCS3 decreased SCI-induced demyelination in white matter of spinal cord both rostral and caudal to the injury site 1 week post-injury, but not rostral to the injury at 4 weeks post-injury. Importantly, similar effects as Lenti-shSOCS3 on increasing MAP-2+ intensity and dendrite length, and preventing demyelination were observed when a second shSOCS3 (Lenti-shSOCS3 #2) was applied to rule out the possibilities of off target effects of shRNA. Collectively, these results suggest that knocking down of SOCS3 enhances dendritic regeneration and prevents demyelination after SCI.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Cell Line
  • Demyelinating Diseases / pathology*
  • Dendrites / pathology*
  • Female
  • Interleukin-6 / pharmacology
  • Rats
  • Rats, Sprague-Dawley
  • STAT3 Transcription Factor / chemistry
  • STAT3 Transcription Factor / metabolism
  • Spinal Cord Injuries / pathology*
  • Suppressor of Cytokine Signaling 3 Protein
  • Suppressor of Cytokine Signaling Proteins / metabolism*
  • Tyrosine / metabolism

Substances

  • Interleukin-6
  • STAT3 Transcription Factor
  • Socs3 protein, rat
  • Stat3 protein, rat
  • Suppressor of Cytokine Signaling 3 Protein
  • Suppressor of Cytokine Signaling Proteins
  • Tyrosine