The nematode Caenorhabditis elegans is an important model organism for biomedical research. We previously described NeuCode stable isotope labeling by amino acids in cell culture (SILAC), a method for accurate proteome quantification with potential for multiplexing beyond the limits of traditional stable isotope labeling by amino acids in cell culture. Here we apply NeuCode SILAC to profile the proteomic and phosphoproteomic response of C. elegans to two potent members of the ascaroside family of nematode pheromones. By consuming labeled E. coli as part of their diet, C. elegans nematodes quickly and easily incorporate the NeuCode heavy lysine isotopologues by the young adult stage. Using this approach, we report, at high confidence, one of the largest proteomic and phosphoproteomic data sets to date in C. elegans: 6596 proteins at a false discovery rate ≤ 1% and 6620 phosphorylation isoforms with localization probability ≥75%. Our data reveal a post-translational signature of pheromone sensing that includes many conserved proteins implicated in longevity and response to stress.
© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.