Differential Toxicity of Nuclear RNA Foci versus Dipeptide Repeat Proteins in a Drosophila Model of C9ORF72 FTD/ALS
- PMID: 26402604
- PMCID: PMC4589299
- DOI: 10.1016/j.neuron.2015.09.015
Differential Toxicity of Nuclear RNA Foci versus Dipeptide Repeat Proteins in a Drosophila Model of C9ORF72 FTD/ALS
Abstract
Dipeptide repeat (DPR) proteins are toxic in various models of FTD/ALS with GGGGCC (G4C2) repeat expansion. However, it is unclear whether nuclear G4C2 RNA foci also induce neurotoxicity. Here, we describe a Drosophila model expressing 160 G4C2 repeats (160R) flanked by human intronic and exonic sequences. Spliced intronic 160R formed nuclear G4C2 sense RNA foci in glia and neurons about ten times more abundantly than in human neurons; however, they had little effect on global RNA processing and neuronal survival. In contrast, highly toxic 36R in the context of poly(A)(+) mRNA were exported to the cytoplasm, where DPR proteins were produced at >100-fold higher level than in 160R flies. Moreover, the modest toxicity of intronic 160R expressed at higher temperature correlated with increased DPR production, but not RNA foci. Thus, nuclear RNA foci are neutral intermediates or possibly neuroprotective through preventing G4C2 RNA export and subsequent DPR production.
Keywords: ALS; C9ORF72; DPR; Drosophila; FTD; RNA foci; Ran translation; repeats.
Copyright © 2015 Elsevier Inc. All rights reserved.
Figures
Similar articles
-
Sense and antisense RNA are not toxic in Drosophila models of C9orf72-associated ALS/FTD.Acta Neuropathol. 2018 Mar;135(3):445-457. doi: 10.1007/s00401-017-1798-3. Epub 2018 Jan 29. Acta Neuropathol. 2018. PMID: 29380049 Free PMC article.
-
Insights into C9ORF72-Related ALS/FTD from Drosophila and iPSC Models.Trends Neurosci. 2018 Jul;41(7):457-469. doi: 10.1016/j.tins.2018.04.002. Epub 2018 May 2. Trends Neurosci. 2018. PMID: 29729808 Free PMC article. Review.
-
Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death.Neuron. 2014 Dec 17;84(6):1213-25. doi: 10.1016/j.neuron.2014.12.010. Neuron. 2014. PMID: 25521377 Free PMC article.
-
Pathogenic determinants and mechanisms of ALS/FTD linked to hexanucleotide repeat expansions in the C9orf72 gene.Neurosci Lett. 2017 Jan 1;636:16-26. doi: 10.1016/j.neulet.2016.09.007. Epub 2016 Sep 13. Neurosci Lett. 2017. PMID: 27619540 Free PMC article. Review.
-
Reduced autophagy upon C9ORF72 loss synergizes with dipeptide repeat protein toxicity in G4C2 repeat expansion disorders.EMBO J. 2020 Feb 17;39(4):e100574. doi: 10.15252/embj.2018100574. Epub 2020 Jan 13. EMBO J. 2020. PMID: 31930538 Free PMC article.
Cited by
-
Mitigation of TDP-43 toxic phenotype by an RGNEF fragment in amyotrophic lateral sclerosis models.Brain. 2024 Jun 3;147(6):2053-2068. doi: 10.1093/brain/awae078. Brain. 2024. PMID: 38739752 Free PMC article.
-
In-depth clinico-pathological examination of RNA foci in a large cohort of C9ORF72 expansion carriers.Acta Neuropathol. 2017 Aug;134(2):255-269. doi: 10.1007/s00401-017-1725-7. Epub 2017 May 15. Acta Neuropathol. 2017. PMID: 28508101 Free PMC article.
-
BET bromodomain inhibitors PFI-1 and JQ1 are identified in an epigenetic compound screen to enhance C9ORF72 gene expression and shown to ameliorate C9ORF72-associated pathological and behavioral abnormalities in a C9ALS/FTD model.Clin Epigenetics. 2021 Mar 16;13(1):56. doi: 10.1186/s13148-021-01039-z. Clin Epigenetics. 2021. PMID: 33726839 Free PMC article.
-
Mechanisms of repeat-associated non-AUG translation in neurological microsatellite expansion disorders.Biochem Soc Trans. 2021 Apr 30;49(2):775-792. doi: 10.1042/BST20200690. Biochem Soc Trans. 2021. PMID: 33729487 Free PMC article. Review.
-
RAN translation-What makes it run?Brain Res. 2016 Sep 15;1647:30-42. doi: 10.1016/j.brainres.2016.04.003. Epub 2016 Apr 6. Brain Res. 2016. PMID: 27060770 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Associated data
- Actions
Grants and funding
- R01NS077402/NS/NINDS NIH HHS/United States
- R21 NS089979/NS/NINDS NIH HHS/United States
- R21NS089979/NS/NINDS NIH HHS/United States
- P50 AG016574/AG/NIA NIH HHS/United States
- R21NS086318/NS/NINDS NIH HHS/United States
- P50AG016574/AG/NIA NIH HHS/United States
- R01NS057553/NS/NINDS NIH HHS/United States
- R01 NS063964/NS/NINDS NIH HHS/United States
- R21 NS086318/NS/NINDS NIH HHS/United States
- R01NS063964/NS/NINDS NIH HHS/United States
- R01 NS088689/NS/NINDS NIH HHS/United States
- R01NS088689/NS/NINDS NIH HHS/United States
- R01 NS057553/NS/NINDS NIH HHS/United States
- P01 NS084974/NS/NINDS NIH HHS/United States
- R01NS079725/NS/NINDS NIH HHS/United States
- R21 NS084528/NS/NINDS NIH HHS/United States
- P01NS084974/NS/NINDS NIH HHS/United States
- P01HD078253/HD/NICHD NIH HHS/United States
- R01 NS077402/NS/NINDS NIH HHS/United States
- R21NS084528/NS/NINDS NIH HHS/United States
- R01 NS079725/NS/NINDS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous
