Activation of Notch signaling in hematopoietic cells by tumors contributes to immune escape. T-cell defects in tumors can be reversed by treating tumor-bearing mice with multivalent forms of the Notch receptor ligand DLL-1, but the immunologic correlates of this effect have not been elucidated. Here, we report mechanistic insights along with the efficacy of combinational treatments of multivalent DLL-1 with oncoprotein targeting drugs in preclinical mouse models of lung cancer. Systemic DLL-1 administration increased T-cell infiltration into tumors and elevated numbers of CD44(+)CD62L(+)CD8(+) memory T cells while decreasing the number of regulatory T cells and limiting tumor vascularization. This treatment was associated with upregulation of Notch and its ligands in tumor-infiltrating T cells enhanced expression of T-bet and phosphorylation of Stat1/2. Adoptive transfer of T cells from DLL1-treated tumor-bearing immunocompetent hosts into tumor-bearing SCID-NOD immunocompromised mice attenuated tumor growth and extended tumor-free survival in the recipients. When combined with the EGFR-targeted drug erlotinib, DLL-1 significantly improved progression-free survival by inducing robust tumor-specific T-cell immunity. In tissue culture, DLL1 induced proliferation of human peripheral T cells, but lacked proliferative or clonogenic effects on lung cancer cells. Our findings offer preclinical mechanistic support for the development of multivalent DLL1 to stimulate antitumor immunity.
©2015 American Association for Cancer Research.