AraR, an l-Arabinose-Responsive Transcriptional Regulator in Corynebacterium glutamicum ATCC 31831, Exerts Different Degrees of Repression Depending on the Location of Its Binding Sites within the Three Target Promoter Regions

J Bacteriol. 2015 Dec;197(24):3788-96. doi: 10.1128/JB.00314-15. Epub 2015 Sep 28.

Abstract

In Corynebacterium glutamicum ATCC 31831, a LacI-type transcriptional regulator AraR, represses the expression of l-arabinose catabolism (araBDA), uptake (araE), and the regulator (araR) genes clustered on the chromosome. AraR binds to three sites: one (BSB) between the divergent operons (araBDA and galM-araR) and two (BSE1 and BSE2) upstream of araE. L-Arabinose acts as an inducer of the AraR-mediated regulation. Here, we examined the roles of these AraR-binding sites in the expression of the AraR regulon. BSB mutation resulted in derepression of both araBDA and galM-araR operons. The effects of BSE1 and/or BSE2 mutation on araE expression revealed that the two sites independently function as the cis elements, but BSE1 plays the primary role. However, AraR was shown to bind to these sites with almost the same affinity in vitro. Taken together, the expression of araBDA and araE is strongly repressed by binding of AraR to a single site immediately downstream of the respective transcriptional start sites, whereas the binding site overlapping the -10 or -35 region of the galM-araR and araE promoters is less effective in repression. Furthermore, downregulation of araBDA and araE dependent on l-arabinose catabolism observed in the BSB mutant and the AraR-independent araR promoter identified within galM-araR add complexity to regulation of the AraR regulon derepressed by L-arabinose.

Importance: Corynebacterium glutamicum has a long history as an industrial workhorse for large-scale production of amino acids. An important aspect of industrial microorganisms is the utilization of the broad range of sugars for cell growth and production process. Most C. glutamicum strains are unable to use a pentose sugar L-arabinose as a carbon source. However, genes for L-arabinose utilization and its regulation have been recently identified in C. glutamicum ATCC 31831. This study elucidates the roles of the multiple binding sites of the transcriptional repressor AraR in the derepression by L-arabinose and thereby highlights the complex regulatory feedback loops in combination with l-arabinose catabolism-dependent repression of the AraR regulon in an AraR-independent manner.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabinose / metabolism
  • Bacterial Proteins / biosynthesis
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Base Sequence
  • Binding Sites / genetics*
  • Corynebacterium glutamicum / genetics*
  • DNA-Binding Proteins / metabolism
  • Gene Expression Regulation, Bacterial*
  • Molecular Sequence Data
  • Monosaccharide Transport Proteins / biosynthesis
  • Promoter Regions, Genetic / genetics*
  • Transcription, Genetic / genetics*

Substances

  • AraE protein, bacteria
  • Bacterial Proteins
  • DNA-Binding Proteins
  • Monosaccharide Transport Proteins
  • Arabinose