Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Mar 3;10(1-2):154-62.
doi: 10.1080/19336918.2015.1089376. Epub 2015 Sep 29.

Function and control of human invasive trophoblast subtypes: Intrinsic vs. maternal control

Affiliations
Review

Function and control of human invasive trophoblast subtypes: Intrinsic vs. maternal control

Philipp Velicky et al. Cell Adh Migr. .

Abstract

The establishment of a functional placenta is pivotal for normal fetal development and the maintenance of pregnancy. In the course of early placentation, trophoblast precursors differentiate into highly invasive trophoblast subtypes. These cells, referred to as extravillous trophoblasts (EVTs), penetrate the maternal uterus reaching as far as the inner third of the myometrium. One of the most fundamental functions of EVTs is the transformation of spiral arteries to establish the uteroplacental blood circulation assuring an adequate nutrient and gas supply to the developing fetus. To achieve this, specialized EVT subpopulations interact with maternal immune cells, provoke elastolysis in the arterial wall and replace the endothelial cells lining the spiral arteries to induce intraluminal vascular remodeling. These and other trophoblast-mediated processes are tightly controlled by paracrine signals from the maternal decidua and furthermore underlie an intrinsic cell-type specific program. Various severe pregnancy complications such as preeclampsia or intrauterine growth retardation are associated with abnormal EVT function, shallow invasion, and decreased blood flow to the placenta. Hence a better understanding of human trophoblast invasion seems mandatory to improve therapeutic intervention. This approach, however, requires a profound knowledge of the human placenta, its various trophoblast subtypes and in particular a better understanding of the regulatory network that controls the invasive phenotype of EVTs.

Keywords: EVT; decidua; invasion; placenta; preeclampsia; trophoblast.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Human trophoblast invasion. (A) The placenta connects the fetus to the uterine wall and establishes a vascular connection between mother and child. The placenta is structured as villous tree and is in direct contact with maternal blood and, thus referred to as hemochorial. The site where the placenta comes in direct contact with the maternal decidua is called the fetal-maternal interface. (B) During early pregnancy, vCTBs fuse to form multinucleated STs, which surround the placental villus. STs transport nutrients and gases from the maternal to the fetal circulation and represent the major endocrine unit of the placenta by secreting hormones such as chorionic gonadotropin, placental growth hormone or placental lactogen. AV form cell columns that attach to the maternal decidua and give rise to the EVT lineage. Invasive EVTs can be divided into iCTBs, which invade the decidual stroma and become terminally differentiated multinucleated GCs, or eCTBs. (i) The latter colonise the lumen of uterine spiral arteries and together with iCTBs, macrophages and uNK cells convert these vessels into larger conduits to guarantee adequate blood flow to the growing fetus. (ii) Various decidual cell types such as macrophages, uNK cells and decidual stromal cells interact with the interstitial cytotrophoblasts in order to control iCTB invasion in an in a spatio-temporal manner. (iii) In addition, iCTBs invade and replace the epithelium of endometrial glands. AV, anchoring villus; CC, cell column; EVT, extravillous cytotrophoblast; eCTB, endovascular cytotrophoblast; iCTB, interstitial cytotrophoblast; SA, spiral artery; ST, syncytiotrophoblast; uNK, uterine natural killer cell.

Similar articles

Cited by

References

    1. Daly DC, Maslar IA, Riddick DH. Prolactin production during in vitro decidualization of proliferative endometrium. Am J Obstet Gynecol 1983; 145:672-8; PMID:6829654 - PubMed
    1. Maas JW, Groothuis PG, Dunselman GA, de Goeij AF, Struyker Boudier HA, Evers JL. Endometrial angiogenesis throughout the human menstrual cycle. Hum Reprod 2001; 16:1557-61; PMID:11473943; http://dx.doi.org/10.1093/humrep/16.8.1557 - DOI - PubMed
    1. Starkey PM, Clover LM, Rees MC. Variation during the menstrual cycle of immune cell populations in human endometrium. Eur J Obstet Gynecol Reprod Biol 1991; 39:203-7; PMID:1709605; http://dx.doi.org/10.1016/0028-2243(91)90058-S - DOI - PubMed
    1. Bulmer JN, Morrison L, Longfellow M, Ritson A, Pace D. Granulated lymphocytes in human endometrium: histochemical and immunohistochemical studies. Hum Reprod 1991; 6:791-8; PMID:1757516 - PubMed
    1. King A, Loke YW. On the nature and function of human uterine granular lymphocytes. Immunol Today 1991; 12:432-5; PMID:1786078; http://dx.doi.org/10.1016/0167-5699(91)90014-K - DOI - PubMed

Publication types

LinkOut - more resources