Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury

Acta Neuropathol. 2015 Nov;130(5):605-18. doi: 10.1007/s00401-015-1482-4. Epub 2015 Sep 29.


The peripheral nervous system (PNS) has remarkable regenerative abilities after injury. Successful PNS regeneration relies on both injured axons and non-neuronal cells, including Schwann cells and immune cells. Macrophages are the most notable immune cells that play key roles in PNS injury and repair. Upon peripheral nerve injury, a large number of macrophages are accumulated at the injury sites, where they not only contribute to Wallerian degeneration, but also are educated by the local microenvironment and polarized to an anti-inflammatory phenotype (M2), thus contributing to axonal regeneration. Significant progress has been made in understanding how macrophages are educated and polarized in the injured microenvironment as well as how they contribute to axonal regeneration. Following the discussion on the main properties of macrophages and their phenotypes, in this review, we will summarize the current knowledge regarding the mechanisms of macrophage infiltration after PNS injury. Moreover, we will discuss the recent findings elucidating how macrophages are polarized to M2 phenotype in the injured PNS microenvironment, as well as the role and underlying mechanisms of macrophages in peripheral nerve injury, Wallerian degeneration and regeneration. Furthermore, we will highlight the potential application by targeting macrophages in treating peripheral nerve injury and peripheral neuropathies.

Keywords: Macrophage infiltration; Macrophage polarization; Macrophages; Peripheral nerve; Peripheral nerve regeneration; Wallerian degeneration.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Axons / pathology
  • Axons / physiology*
  • Macrophages / pathology
  • Macrophages / physiology*
  • Nerve Regeneration / physiology*
  • Peripheral Nerve Injuries / pathology
  • Peripheral Nerve Injuries / physiopathology*
  • Wallerian Degeneration / pathology
  • Wallerian Degeneration / physiopathology*