Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
, 88 (1), 2-29

Miniature and Fieldable Mass Spectrometers: Recent Advances

Affiliations
Review

Miniature and Fieldable Mass Spectrometers: Recent Advances

Dalton T Snyder et al. Anal Chem.

Abstract

Figures

Figure 1
Figure 1
Schematic showing several ambient and non-ambient ionization sources that could be coupled to miniature mass spectrometers: (a) desorption electrospray ionization (Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Science 2004, 306, 471–473. Reprinted with permission from AAAS.), (b) direct analysis in real time (Reproduced from Cody, R. B.; Laramee, J. A.; Durst, H. D. Anal. Chem. 2005, 77, 2297–2302. Copyright 2005 American Chemical Society.), (c) relay electrospray ionization (Reproduced from On-Demand Ambient Ionization of Picoliter Samples Using Charge Pulses. Li, A.; Hollerbach, A.; Luo, Q.; Cooks, R. G. Angew. Chem. Int. Ed. Engl., Vol. 54, Issue 23. Copyright © 2015 Wiley.), (d) low-temperature plasma ionization (Reproduced from Harper, J. D.; Charipar, N. A.; Mulligan, C. C.; Zhang, X.; Cooks, R. G.; Ouyang, Z. Anal. Chem. 2008, 80, 9097–9104. Copyright 2008 American Chemical Society.) (e) plasma-assisted desorption ionization (Reproduced from Salter, T. L.; Gilmore, I. S.; Bowfield, A.; Olabanji, O. T.; Bradley, J. W. Anal. Chem. 2013, 85, 1675–1682. Copyright 2013 American Chemical Society.), (f) dielectric barrier discharge ionization (From Na, N.; Zhao, M.; Zhang, S.; Yang, C.; Zhang, X. J. Am. Soc. Mass Spectrom. 2007, 18, 1859–1862, with kind permission from Springer Science and Business Media.), (g) paper spray (Reproduced from Liu, J.; Wang, H.; Manicke, N. E.; Lin, J. M.; Cooks, R. G.; Ouyang, Z. Anal. Chem. 2010, 82, 2463–2471. Copyright 2010 American Chemical Society.), (h) paper spray with integrated solid-phase extraction cartridge (Reproduced from Zhang, C.; Manicke, N. E. Anal. Chem. 2015, 87, 6212–6219. Copyright 2015 American Chemical Society.), (i) leaf spray (Reproduced from Liu, J.; Wang, H.; Cooks, R. G.; Ouyang, Z. Anal. Chem. 2011, 83, 7608–7613. Copyright 2011 American Chemical Society.), (j) wooden tip electrospray (Reproduced from Hu, B.; So, P. K.; Chen, H.; Yao, Z. P. Anal. Chem. 2011, 83, 8201–8207. Copyright 2011 American Chemical Society.), (k) membrane electrospray (Reproduced from Zhang, M.; Lin, F.; Xu, J.; Xu, W. Anal. Chem. 2015, 87, 3123–3128. Copyright 2015 American Chemical Society.), and (l) coated blade spray (Reproduced from Development of Coated Blade Spray Ionization Mass Spectrometry for the Quantitation of Target Analytes Present in Complex Matrices, Gomez-Rios, G. A.; Pawliszyn, J. Angew. Chem. Int. Ed. Engl., Vol. 53, Issue 52. Copyright © 2014 Wiley.).
Figure 2
Figure 2
Interfaces connecting the ambient pressure environment to the mass analyzer in vacuum: (a) discontinuous atmospheric pressure interface (DAPI) with (b) DAPI scan table (Reproduced from Gao, L.; Cooks, R. G.; Ouyang, Z. Anal. Chem. 2008, 80, 4026–4032. Copyright 2008 American Chemical Society.), (c) pulsed pinhole atmospheric pressure interface (PP-API) (Reproduced from A Pulsed Pinhole Atmospheric Pressure Interface for Simplified Mass Spectrometry Instrumentation with Enhanced Sensitivity. Wei, Y.; Bian, C.; Ouyang, Z.; Xu, W. Rapid Commun. Mass Spectrom., Vol. 29, Issue 8. Copyright © 2015 Wiley.), (d) membrane introduction (Reproduced from Riter, L. S.; Peng, Y.; Noll, R. J.; Patterson, G. E.; Aggerholm, T.; Cooks, R. G. Anal. Chem. 2002, 74, 6154–6162. Copyright 2002 American Chemical Society.), and (e) continuous atmospheric pressure interface enabled by differential pumping (Reproduced from Zhai, Y.; Feng, Y.; Wei, Y.; Wang, Y.; Xu, W. Analyst 2015, 140, 3406–3414, with permission of The Royal Society of Chemistry.).
Figure 3
Figure 3
(a) General configuration for portable mass spectrometers with discontinuous interfaces, (b) backing and high-vacuum pumps from KNF, Creare, and Pfeiffer, and (c) performance comparison of three high-vacuum pumps backed by the Creare scroll pump. Reprinted from Chen, C. H.; Chen, T. C.; Zhou, X.; Kline-Schoder, R.; Sorensen, P.; Cooks, R. G.; Ouyang, Z. J. Am. Soc. Mass Spectrom. 2015, 26, 240–247, with kind permission from Springer Science and Business Media.
Figure 4
Figure 4
Evolution of mass analyzers. Toroidal and simplified toroidal trap reprinted from Int. J. Mass Spectrom., Vol. 321–322, Taylor, N.; Austin, D. E. A Simplified Toroidal Ion Trap Mass Analyzer, pp. 25–32. Copyright 2012, with permission from Elsevier. Halo trap reproduced from Austin, D. E.; Wang, M.; Tolley, S. E.; Maas, J. D.; Hawkins, A. R.; Rockwood, A. L.; Tolley, H. D.; Lee, E. D.; Lee, M. L. Anal. Chem. 2007, 79, 2927–2932. Copyright 2007 American Chemical Society. Half-round rod trap adapted from Li, X.; Zhang, X.; Yao, R.; He, Y.; Zhu, Y.; Qian, J. J. Am. Soc. Mass Spectrom. 2015, 26, 734–740, with kind permission from Springer Science and Business Media. Asymmetrical arc-shaped electrodes adapted from A Novel Asymmetrical Arc-shaped Electrode Ion Trap for Improving the Performance of a Miniature Mass Spectrometer, Zhang, Z. Y.; Li, C.; Ding, C. F.; Xu, F.; Li, B.; Huang, Q.; Xia, H., Rapid Commun. Mass Spectrom., Vol. 28, Issue 15. Copyright © 2014 Wiley. Mass filter and 3D, cylindrical, rectilinear, and linear traps reproduced from Ouyang, Z.; Wu, G.; Song, Y.; Li, H.; Plass, W. R.; Cooks, R. G. Anal. Chem. 2004, 76, 4595–4605. Copyright 2004 American Chemical Society.
Figure 5
Figure 5
Alternative configurations of mass analyzers: (a) DAPI-RIT-DAPI configuration (Reprinted from Lin, Z.; Tan, L.; Garimella, S.; Li, L.; Chen, T. C.; Xu, W.; Xia, Y.; Ouyang, Z. J. Am. Soc. Mass Spectrom. 2014, 25, 48–56, with kind permission from Springer Science and Business Media.), (b) a double RIT (Reproduced from Li, L.; Zhou, X.; Hager, J. W.; Ouyang, Z. Analyst 2014, 139, 4779–4784, with permission of The Royal Society of Chemistry.), (c) circular array of polymer-based RITs (Reproduced from Fico, M.; Maas, J. D.; Smith, S. A.; Costa, A. B.; Ouyang, Z.; Chappell, W. J.; Cooks, R. G. Analyst 2009, 134, 1338–1347, with permission of The Royal Society of Chemistry.), and (d) ion sponge composed of stacked meshes (Reproduced from Xu, W.; Li, L.; Zhou, X.; Ouyang, Z. Anal. Chem. 2014, 86, 4102–4109. Copyright 2014 American Chemical Society.).
Figure 6
Figure 6
Array of cylindrical ion traps fabricated by silicon-based MEMS: (a) comparison of etching steps in conventional Si wafer MEMS methodology using photolithography and DRIE and simpler alternative silicon-on-insulator (SOI) technique (see reference for details), (b) schematic of CIT array formed by bonding two devices etched in (a), and (c) image of the CIT array next to a nickel (21 mm in diameter) for size comparison. Reprinted from Int. J. Mass Spectrom., Vol. 371, Chaudhary, A.; van Amerom, F. H. W.; Short, R. T., Experimental Evaluation of Micro-ion Trap Mass Spectrometer Geometries, pp. 17–27. Copyright 2014, with permission from Elsevier.
Figure 7
Figure 7
Simulations of ion motion: (a) small 3D-printed plastic device with a potential gradient established for ion mobility separations prior to a mass spectrometer inlet (electrodes in black, spacers in white, mass spectrometer inlet on right) and (b) SIMION simulations showing ion focusing in the device (Reproduced in part from Baird, Z.; Wei, P.; Cooks, R. G. Analyst 2015, 140, 696–700, with permission of The Royal Society of Chemistry.), (c) SIMION ion trajectories for turn-based structures for lossless ion manipulations (SLIM) (Reprinted from Garimella, S. V.; Ibrahim, Y. M.; Webb, I. K.; Tolmachev, A. V.; Zhang, X.; Prost, S. A.; Anderson, G. A.; Smith, R. D. J. Am. Soc. Mass Spectrom. 2014, 25, 1890–1896, with kind permission from Springer Science and Business Media.), (d) simulated space charge effect on mass shift and mass resolution in a 3D ion trap calculated with homebuilt algorithms and GPU acceleration (Reprinted from Xiong, X.; Xu, W.; Fang, X.; Deng, Y.; Ouyang, Z. J. Am. Soc. Mass Spectrom. 2012, 23, 1799–1807, with kind permission from Springer Science and Business Media.), (e) contour map of simulated flow speeds in a capillary-tube lens-skimmer-quadrupole configuration, and (f) simulated ion trajectories in the quadrupole with and without a dynamic gas model. Figures (e) and (f) reproduced from Zhou, X.; Ouyang, Z. Analyst 2014, 139, 5215–5222, with permission of The Royal Society of Chemistry.
Figure 8
Figure 8
Schematic showing the electronic system (power distribution board not shown) of the Mini 12 mass spectrometer developed at Purdue University as well as expert and novice interfaces for instrument operation and data collection. Adapted from Li, L.; Chen, T. C.; Ren, Y.; Hendricks, P. I.; Cooks, R. G.; Ouyang, Z. Anal. Chem. 2014, 86, 2909–2916. Copyright 2014 American Chemical Society.
Figure 9
Figure 9
Demonstrated practical applications of miniature mass spectrometers: (a) pesticide detection and semi-quantitative analysis over the course of a week (Reprinted from Pulliam, C. J.; Bain, R. M.; Wiley, J. S.; Ouyang, Z.; Cooks, R. G. J. Am. Soc. Mass Spectrom. 2015, 26, 224–230, with kind permission from Springer Science and Business Media.), (b) detection of hazardous compounds in air (Reprinted from Huang, G.; Gao, L.; Duncan, J.; Harper, J. D.; Sanders, N. L.; Ouyang, Z.; Cooks, R. G. J. Am. Soc. Mass Spectrom. 2010, 21, 132–135, with kind permission from Springer Science and Business Media.), (c) detection of explosives on surfaces (Reproduced from Sanders, N. L.; Kothari, S.; Huang, G. M.; Salazar, G.; Cooks, R. G. Anal. Chem. 2010, 82, 5313–5316. Copyright 2010 American Chemical Society.), and (d) breath analysis before and after smoking a cigarette (Reprinted from Int. J. Mass Spectrom., Vol. 299, Berchtold, C.; Meier, L.; Zenobi, R., Evaluation of Extractive Electrospray Ionization and Atmospheric Pressure Chemical Ionization for the Detection of Narcotics in Breath, pp. 145–150. Copyright 2011, with permission from Elsevier.).

Similar articles

See all similar articles

Cited by 33 PubMed Central articles

See all "Cited by" articles

Publication types

MeSH terms

Feedback