The Evolutionary Origin of a Terrestrial Flora

Curr Biol. 2015 Oct 5;25(19):R899-910. doi: 10.1016/j.cub.2015.08.029.


Life on Earth as we know it would not be possible without the evolution of plants, and without the transition of plants to live on land. Land plants (also known as embryophytes) are a monophyletic lineage embedded within the green algae. Green algae as a whole are among the oldest eukaryotic lineages documented in the fossil record, and are well over a billion years old, while land plants are about 450-500 million years old. Much of green algal diversification took place before the origin of land plants, and the land plants are unambiguously members of a strictly freshwater lineage, the charophyte green algae. Contrary to single-gene and morphological analyses, genome-scale phylogenetic analyses indicate the sister taxon of land plants to be the Zygnematophyceae, a group of mostly unbranched filamentous or single-celled organisms. Indeed, several charophyte green algae have historically been used as model systems for certain problems, but often without a recognition of the specific phylogenetic relationships among land plants and (other) charophyte green algae. Insight into the phylogenetic and genomic properties of charophyte green algae opens up new opportunities to study key properties of land plants in closely related model. This review will outline the transition from single-celled algae to modern-day land plants, and will highlight the bright promise studying the charophyte green algae holds for better understanding plant evolution.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Biological Evolution*
  • Charophyceae / anatomy & histology
  • Charophyceae / classification*
  • Charophyceae / genetics
  • Embryophyta / anatomy & histology
  • Embryophyta / classification*
  • Embryophyta / genetics
  • Evolution, Molecular
  • Phylogeny