Detecting glaucomatous change in visual fields: Analysis with an optimization framework
- PMID: 26440445
- PMCID: PMC4684767
- DOI: 10.1016/j.jbi.2015.09.019
Detecting glaucomatous change in visual fields: Analysis with an optimization framework
Abstract
Detecting glaucomatous progression is an important aspect of glaucoma management. The assessment of longitudinal series of visual fields, measured using Standard Automated Perimetry (SAP), is considered the reference standard for this effort. We seek efficient techniques for determining progression from longitudinal visual fields by formulating the problem as an optimization framework, learned from a population of glaucoma data. The longitudinal data from each patient's eye were used in a convex optimization framework to find a vector that is representative of the progression direction of the sample population, as a whole. Post-hoc analysis of longitudinal visual fields across the derived vector led to optimal progression (change) detection. The proposed method was compared to recently described progression detection methods and to linear regression of instrument-defined global indices, and showed slightly higher sensitivities at the highest specificities than other methods (a clinically desirable result). The proposed approach is simpler, faster, and more efficient for detecting glaucomatous changes, compared to our previously proposed machine learning-based methods, although it provides somewhat less information. This approach has potential application in glaucoma clinics for patient monitoring and in research centers for classification of study participants.
Keywords: Change detection; Computational modeling; Data mining; Glaucoma; Progression; Standard automated perimetry; Visual field.
Copyright © 2015 Elsevier Inc. All rights reserved.
Figures
Similar articles
-
Glaucomatous visual field progression with frequency-doubling technology and standard automated perimetry in a longitudinal prospective study.Invest Ophthalmol Vis Sci. 2005 Feb;46(2):547-54. doi: 10.1167/iovs.04-0973. Invest Ophthalmol Vis Sci. 2005. PMID: 15671281
-
Frequency doubling technology perimetry abnormalities as predictors of glaucomatous visual field loss.Am J Ophthalmol. 2004 May;137(5):863-71. doi: 10.1016/j.ajo.2003.12.009. Am J Ophthalmol. 2004. PMID: 15126151
-
Frequency doubling technology perimetry for detection of visual field progression in glaucoma: a pointwise linear regression analysis.Invest Ophthalmol Vis Sci. 2014 May 2;55(5):2862-9. doi: 10.1167/iovs.13-13225. Invest Ophthalmol Vis Sci. 2014. PMID: 24595388
-
Visual function-specific perimetry for indirect comparison of different ganglion cell populations in glaucoma.Invest Ophthalmol Vis Sci. 2000 Jun;41(7):1783-90. Invest Ophthalmol Vis Sci. 2000. PMID: 10845599
-
[Visual field progression in glaucoma: cluster analysis].J Fr Ophtalmol. 2012 Nov;35(9):735-41. doi: 10.1016/j.jfo.2011.10.011. Epub 2012 Jul 6. J Fr Ophtalmol. 2012. PMID: 22771181 Review. French.
Cited by
-
Novel Machine-Learning Based Framework Using Electroretinography Data for the Detection of Early-Stage Glaucoma.Front Neurosci. 2022 May 4;16:869137. doi: 10.3389/fnins.2022.869137. eCollection 2022. Front Neurosci. 2022. PMID: 35600610 Free PMC article.
-
Predicting eyes at risk for rapid glaucoma progression based on an initial visual field test using machine learning.PLoS One. 2021 Apr 16;16(4):e0249856. doi: 10.1371/journal.pone.0249856. eCollection 2021. PLoS One. 2021. PMID: 33861775 Free PMC article.
-
Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective.Prog Retin Eye Res. 2021 May;82:100900. doi: 10.1016/j.preteyeres.2020.100900. Epub 2020 Sep 6. Prog Retin Eye Res. 2021. PMID: 32898686 Free PMC article. Review.
-
Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard.Ophthalmology. 2020 Sep;127(9):1170-1178. doi: 10.1016/j.ophtha.2020.03.008. Epub 2020 Mar 10. Ophthalmology. 2020. PMID: 32317176 Free PMC article.
-
Comparing 10-2 and 24-2 Visual Fields for Detecting Progressive Central Visual Loss in Glaucoma Eyes with Early Central Abnormalities.Ophthalmol Glaucoma. 2019 Mar-Apr;2(2):95-102. doi: 10.1016/j.ogla.2019.01.003. Epub 2019 Jan 14. Ophthalmol Glaucoma. 2019. PMID: 31742250 Free PMC article.
References
-
- Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004 May 22;363:1711–1720. - PubMed
-
- Johnson CA, Sample PA, Cioffi GA, Liebmann JR, Weinreb RN. Structure and function evaluation (SAFE): I. Criteria for glaucomatous visual field loss using standard automated perimetry (SAP) and short wavelength automated perimetry (SWAP) American Journal of Ophthalmology. 2002 Aug;134:177–185. - PubMed
-
- Tanna AP, Bandi JR, Budenz DL, Feuer WJ, Feldman RM, Herndon LW, et al. Interobserver agreement and intraobserver reproducibility of the subjective determination of glaucomatous visual field progression. Ophthalmology. 2011 Jan;118:60–65. - PubMed
-
- Ashraf AB, Gavenonis S, Daye D, Mies C, Feldman M, Rosen M, et al. A multichannel Markov random field approach for automated segmentation of breast cancer tumor in DCE-MRI data using kinetic observation model. Med Image Comput Comput Assist Interv. 2011;14:546–553. - PubMed
Publication types
MeSH terms
Grants and funding
- R01EY008208/EY/NEI NIH HHS/United States
- R01EY021818/EY/NEI NIH HHS/United States
- R01 EY011008/EY/NEI NIH HHS/United States
- P30 EY022589/EY/NEI NIH HHS/United States
- U10EY14267/EY/NEI NIH HHS/United States
- R01 EY019869/EY/NEI NIH HHS/United States
- R01 EY021818/EY/NEI NIH HHS/United States
- R01 EY008208/EY/NEI NIH HHS/United States
- R01EY011008/EY/NEI NIH HHS/United States
- U10 EY014267/EY/NEI NIH HHS/United States
- R01 EY022039/EY/NEI NIH HHS/United States
- P30EY022589/EY/NEI NIH HHS/United States
- R01EY022039/EY/NEI NIH HHS/United States
- R01EY019869/EY/NEI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
