Ketopantoyl-lactone Reductase From Candida Parapsilosis: Purification and Characterization as a Conjugated Polyketone Reductase

Biochim Biophys Acta. 1989 Feb 24;990(2):175-81. doi: 10.1016/s0304-4165(89)80031-5.


Ketopantoyl-lactone reductase (2-dehydropantoyl-lactone reductase, EC was purified and crystallized from cells of Candida parapsilosis IFO 0708. The enzyme was found to be homogeneous on ultracentrifugation, high-performance gel-permeation liquid chromatography and SDS-polyacrylamide gel electrophoresis. The relative molecular mass of the native and SDS-treated enzyme is approximately 40,000. The isoelectric point of the enzyme is 6.3. The enzyme was found to catalyze specifically the reduction of a variety of natural and unnatural polyketones and quinones other than ketopantoyl lactone in the presence of NADPH. Isatin and 5-methylisatin are rapidly reduced by the enzyme, the Km and Vmax values for isatin being 14 microM and 306 mumol/min per mg protein, respectively. Ketopantoyl lactone is also a good substrate (Km = 333 microM and Vmax = 481 mumol/min per mg protein). Reverse reaction was not detected with pantoyl lactone and NADP+. The enzyme is inhibited by quercetin, several polyketones and SH-reagents. 3,4-Dihydroxy-3-cyclobutene-1,2-dione, cyclohexenediol-1,2,3,4-tetraone and parabanic acid are uncompetitive inhibitors for the enzyme, the Ki values being 1.4, 0.2 and 3140 microM, respectively, with isatin as substrate. Comparison of the enzyme with the conjugated polyketone reductase of Mucor ambiguus (S. Shimizu, H. Hattori, H. Hata and H. Yamada (1988) Eur. J. Biochem. 174, 37-44) and ketopantoyl-lactone reductase of Saccharomyces cerevisiae suggested that ketopantoyl-lactone reductase is a kind of conjugated polyketone reductase.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alcohol Oxidoreductases / isolation & purification*
  • Alcohol Oxidoreductases / metabolism
  • Candida / enzymology*
  • Isoelectric Point
  • Kinetics
  • NADP / metabolism
  • Substrate Specificity


  • NADP
  • Alcohol Oxidoreductases
  • 2-oxopantoyl lactone reductase