Effect of esters of succinic acid and other citric acid cycle intermediates on insulin release and inositol phosphate formation by pancreatic islets

Arch Biochem Biophys. 1989 Mar;269(2):400-6. doi: 10.1016/0003-9861(89)90123-9.

Abstract

Esters of carboxylic acids are permeable to cells and once inside the cell are hydrolyzed to carboxylic acids. Methyl and ethyl esters of succinate and other citric acid cycle intermediates were tested to find out whether they are insulin secretagogues. Monomethyl succinate stimulated insulin release from pancreatic islets in a concentration-dependent manner with maximal release attained at a concentration of 10 mM. Dimethyl succinate (10 mM) was as effective as monomethyl succinate, but pyruvate methyl ester, monoethyl succinate, and dimethyl fumarate were ineffective as primary secretagogues. However, dimethyl fumarate potentiated both leucine- and leucine-plus-glutamine-induced insulin release. Glucose, leucine, leucine plus glutamine, and monomethyl succinate increased inositol tris-, bis- and monophosphate formation in pancreatic islets and antimycin A inhibited this formation. Since mitochondrial metabolism is probably essential for glucose-induced insulin release and the metabolism of succinate and leucine (without or with glutamine) involves mitochondrial respiration exclusively, these results might indicate that mitochondrial metabolism generates conditions or factors that are transmitted to the cytosol to increase inositol trisphosphate formation and thus calcium mobilization and insulin release. Since succinate is believed to enter metabolism at site II of the mitochondrial respiratory chain, it is interesting that rotenone, an inhibitor of NADH dehydrogenase and site I of the respiratory chain, was a potent inhibitor of monomethyl succinate-induced insulin released. Rotenone also inhibited leucine (plus or minus glutamine)-induced insulin release. These results indicate that beta cell metabolism of monomethyl succinate and leucine, like glucose, influences dehydrogenases that produce NADH.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Carboxylic Acids / pharmacology*
  • Citric Acid Cycle
  • Esters
  • In Vitro Techniques
  • Inositol Phosphates / biosynthesis*
  • Insulin / metabolism*
  • Insulin Secretion
  • Islets of Langerhans / drug effects
  • Islets of Langerhans / metabolism*
  • Kinetics
  • Rats
  • Rats, Inbred Strains
  • Structure-Activity Relationship
  • Succinates / pharmacology*
  • Sugar Phosphates / biosynthesis*

Substances

  • Carboxylic Acids
  • Esters
  • Inositol Phosphates
  • Insulin
  • Succinates
  • Sugar Phosphates