Notch signal strength controls cell fate in the haemogenic endothelium
- PMID: 26465397
- PMCID: PMC4634136
- DOI: 10.1038/ncomms9510
Notch signal strength controls cell fate in the haemogenic endothelium
Erratum in
-
Corrigendum: Notch signal strength controls cell fate in the haemogenic endothelium.Nat Commun. 2016 Mar 4;7:10978. doi: 10.1038/ncomms10978. Nat Commun. 2016. PMID: 26939771 Free PMC article. No abstract available.
Abstract
Acquisition of the arterial and haemogenic endothelium fates concurrently occur in the aorta-gonad-mesonephros (AGM) region prior to haematopoietic stem cell (HSC) generation. The arterial programme depends on Dll4 and the haemogenic endothelium/HSC on Jag1-mediated Notch1 signalling. How Notch1 distinguishes and executes these different programmes in response to particular ligands is poorly understood. By using two Notch1 activation trap mouse models with different sensitivity, here we show that arterial endothelial cells and HSCs originate from distinct precursors, characterized by different Notch1 signal strengths. Microarray analysis on AGM subpopulations demonstrates that the Jag1 ligand stimulates low Notch strength, inhibits the endothelial programme and is permissive for HSC specification. In the absence of Jag1, endothelial cells experience high Dll4-induced Notch activity and select the endothelial programme, thus precluding HSC formation. Interference with the Dll4 signal by ligand-specific blocking antibodies is sufficient to inhibit the endothelial programme and favour specification of the haematopoietic lineage.
Conflict of interest statement
Minhong Yan is an employee and shareholder of Roche Genentech. The remaining authors declare no competing financial interest.
Figures
Similar articles
-
Endothelial Jagged1 antagonizes Dll4 regulation of endothelial branching and promotes vascular maturation downstream of Dll4/Notch1.Arterioscler Thromb Vasc Biol. 2015 May;35(5):1134-46. doi: 10.1161/ATVBAHA.114.304741. Epub 2015 Mar 12. Arterioscler Thromb Vasc Biol. 2015. PMID: 25767274
-
Ligand-dependent Notch signaling in vascular formation.Adv Exp Med Biol. 2012;727:210-22. doi: 10.1007/978-1-4614-0899-4_16. Adv Exp Med Biol. 2012. PMID: 22399350 Review.
-
Endothelium and NOTCH specify and amplify aorta-gonad-mesonephros-derived hematopoietic stem cells.J Clin Invest. 2015 May;125(5):2032-45. doi: 10.1172/JCI80137. Epub 2015 Apr 13. J Clin Invest. 2015. PMID: 25866967 Free PMC article.
-
Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence.J Exp Med. 2014 Nov 17;211(12):2411-23. doi: 10.1084/jem.20131857. Epub 2014 Nov 10. J Exp Med. 2014. PMID: 25385755 Free PMC article.
-
Anti-Jagged-1 immunotherapy in cancer.Adv Med Sci. 2022 Sep;67(2):196-202. doi: 10.1016/j.advms.2022.04.001. Epub 2022 Apr 11. Adv Med Sci. 2022. PMID: 35421813 Review.
Cited by
-
Using Pluripotent Stem Cells to Understand Normal and Leukemic Hematopoietic Development.Stem Cells Transl Med. 2022 Nov 18;11(11):1123-1134. doi: 10.1093/stcltm/szac071. Stem Cells Transl Med. 2022. PMID: 36398586 Free PMC article. Review.
-
The molecular and cellular hematopoietic stem cell specification niche.Exp Hematol. 2024 Aug;136:104280. doi: 10.1016/j.exphem.2024.104280. Epub 2024 Jul 14. Exp Hematol. 2024. PMID: 39009276 Review.
-
DNA methylation safeguards the generation of hematopoietic stem and progenitor cells by repression of Notch signaling.Development. 2022 May 15;149(10):dev200390. doi: 10.1242/dev.200390. Epub 2022 May 25. Development. 2022. PMID: 35502759 Free PMC article.
-
Molecular and Cellular Mechanisms of Vascular Development in Zebrafish.Life (Basel). 2021 Oct 15;11(10):1088. doi: 10.3390/life11101088. Life (Basel). 2021. PMID: 34685459 Free PMC article. Review.
-
Dominant mutations of the Notch ligand Jagged1 cause peripheral neuropathy.J Clin Invest. 2020 Mar 2;130(3):1506-1512. doi: 10.1172/JCI128152. J Clin Invest. 2020. PMID: 32065591 Free PMC article.
References
-
- Medvinsky A. & Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86, 897–906 (1996). - PubMed
-
- Kissa K. & Herbomel P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464, 112–115 (2010). - PubMed
-
- Boisset J. C. et al.. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464, 116–120 (2010). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
