A Python tool to set up relative free energy calculations in GROMACS

J Comput Aided Mol Des. 2015 Nov;29(11):1007-14. doi: 10.1007/s10822-015-9873-0. Epub 2015 Oct 20.

Abstract

Free energy calculations based on molecular dynamics (MD) simulations have seen a tremendous growth in the last decade. However, it is still difficult and tedious to set them up in an automated manner, as the majority of the present-day MD simulation packages lack that functionality. Relative free energy calculations are a particular challenge for several reasons, including the problem of finding a common substructure and mapping the transformation to be applied. Here we present a tool, alchemical-setup.py, that automatically generates all the input files needed to perform relative solvation and binding free energy calculations with the MD package GROMACS. When combined with Lead Optimization Mapper (LOMAP; Liu et al. in J Comput Aided Mol Des 27(9):755-770, 2013), recently developed in our group, alchemical-setup.py allows fully automated setup of relative free energy calculations in GROMACS. Taking a graph of the planned calculations and a mapping, both computed by LOMAP, our tool generates the topology and coordinate files needed to perform relative free energy calculations for a given set of molecules, and provides a set of simulation input parameters. The tool was validated by performing relative hydration free energy calculations for a handful of molecules from the SAMPL4 challenge (Mobley et al. in J Comput Aided Mol Des 28(4):135-150, 2014). Good agreement with previously published results and the straightforward way in which free energy calculations can be conducted make alchemical-setup.py a promising tool for automated setup of relative solvation and binding free energy calculations.

Keywords: Automated setup; Free energy calculation; Hydration free energy; Transfer free energy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Energy Metabolism*
  • Molecular Dynamics Simulation*
  • Software
  • Thermodynamics