Nonlinear Fano-Resonant Dielectric Metasurfaces

Nano Lett. 2015 Nov 11;15(11):7388-93. doi: 10.1021/acs.nanolett.5b02802. Epub 2015 Oct 28.


Strong nonlinear light-matter interaction is highly sought-after for a variety of applications including lasing and all-optical light modulation. Recently, resonant plasmonic structures have been considered promising candidates for enhancing nonlinear optical processes due to their ability to greatly enhance the optical near-field; however, their small mode volumes prevent the inherently large nonlinear susceptibility of the metal from being efficiently exploited. Here, we present an alternative approach that utilizes a Fano-resonant silicon metasurface. The metasurface results in strong near-field enhancement within the volume of the silicon resonator while minimizing two photon absorption. We measure a third harmonic generation enhancement factor of 1.5 × 10(5) with respect to an unpatterned silicon film and an absolute conversion efficiency of 1.2 × 10(-6) with a peak pump intensity of 3.2 GW cm(-2). The enhanced nonlinearity, combined with a sharp linear transmittance spectrum, results in transmission modulation with a modulation depth of 36%. The modulation mechanism is studied by pump-probe experiments.

Keywords: Fano resonance; Metamaterial; dielectric antenna; third harmonic generation.