Dual Catalysis for Selective Ring-Opening Polymerization of Lactones: Evolution toward Simplicity

J Am Chem Soc. 2015 Nov 18;137(45):14439-45. doi: 10.1021/jacs.5b09502. Epub 2015 Nov 10.

Abstract

Much work has been directed to the design of complex single-site catalysts for ring-opening polymerization (ROP) to enhance both activity and selectivity. More simply, however, cooperative effects between Lewis acids and organocatalytic nucleophiles/Lewis bases provide a powerful alternative. In this study we demonstrate that the combination of N-heterocyclic carbenes, 1,8-diazabicycloundec-7-ene (DBU) and 4-dimethylaminopyridine (DMAP) with simple Lewis acids enables the ROP of the macrolactone pentadecalactone in a rapid and efficient manner. Remarkably, regardless of the nature of the nucleophile, the order of activity was observed to be MgX2 ≫ YCl3 ≫ AlCl3 and MgI2 > MgBr2 > MgCl2 in every case. The minimal influence of the organobase on polymerization activity allows for the use of simple and inexpensive precursors. Furthermore, extension of the study to other cyclic (di)ester monomers reveals the choice of Lewis acid to lead to monomer selective ROP activity and hence control over copolymer composition by choice of Lewis acid. This approach could lead to the realization of complex polymer structures with tunable physical properties from simple catalyst combinations.

Publication types

  • Research Support, Non-U.S. Gov't