The role of membrane curvature for the wrapping of nanoparticles
- PMID: 26506073
- DOI: 10.1039/c5sm01793a
The role of membrane curvature for the wrapping of nanoparticles
Abstract
Cellular internalization of nanoparticles requires the full wrapping of the nanoparticles by the cell membrane. This wrapping process can occur spontaneously if the adhesive interactions between the nanoparticles and the membranes are sufficiently strong to compensate for the cost of membrane bending. In this article, we show that the membrane curvature prior to wrapping plays a key role for the wrapping process, besides the size and shape of the nanoparticles that have been investigated in recent years. For membrane segments that initially bulge away from nanoparticles by having a mean curvature of the same sign as the mean curvature of the particle surface, we find strongly stable partially wrapped states that can prevent full wrapping. For membrane segments that initially bulge towards the nanoparticles, in contrast, partially wrapped states can constitute a significant energetic barrier for the wrapping process.
Similar articles
-
Wrapping of nanoparticles by membranes.Adv Colloid Interface Sci. 2014 Jun;208:214-24. doi: 10.1016/j.cis.2014.02.012. Epub 2014 Mar 12. Adv Colloid Interface Sci. 2014. PMID: 24703299 Review.
-
Cooperative wrapping of nanoparticles by membrane tubes.Soft Matter. 2014 May 28;10(20):3570-7. doi: 10.1039/c3sm52498a. Epub 2014 Mar 24. Soft Matter. 2014. PMID: 24658648
-
Shape-dependent internalization kinetics of nanoparticles by membranes.Soft Matter. 2016 Mar 7;12(9):2632-41. doi: 10.1039/c5sm01869b. Soft Matter. 2016. PMID: 26853682
-
Curvature-mediated cooperative wrapping of multiple nanoparticles at the same and opposite membrane sides.Nanoscale. 2019 Nov 14;11(42):19751-19762. doi: 10.1039/c9nr03554k. Epub 2019 Aug 6. Nanoscale. 2019. PMID: 31384870
-
Effect of the surface modification, size, and shape on cellular uptake of nanoparticles.Cell Biol Int. 2015 Aug;39(8):881-90. doi: 10.1002/cbin.10459. Epub 2015 Apr 29. Cell Biol Int. 2015. PMID: 25790433 Review.
Cited by
-
Tunable particles alter macrophage uptake based on combinatorial effects of physical properties.Bioeng Transl Med. 2017 Jan 19;2(1):92-101. doi: 10.1002/btm2.10047. eCollection 2017 Mar. Bioeng Transl Med. 2017. PMID: 29313025 Free PMC article.
-
Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine.Beilstein J Nanotechnol. 2020 Feb 14;11:338-353. doi: 10.3762/bjnano.11.25. eCollection 2020. Beilstein J Nanotechnol. 2020. PMID: 32117671 Free PMC article. Review.
-
Nano- and microparticles at fluid and biological interfaces.J Phys Condens Matter. 2017 Sep 20;29(37):373003. doi: 10.1088/1361-648X/aa7933. Epub 2017 Jun 13. J Phys Condens Matter. 2017. PMID: 28608781 Free PMC article.
-
Versatile magnetic microdiscs for the radio enhancement and mechanical disruption of glioblastoma cancer cells.RSC Adv. 2020 Feb 25;10(14):8161-8171. doi: 10.1039/d0ra00164c. eCollection 2020 Feb 24. RSC Adv. 2020. PMID: 35558340 Free PMC article.
-
Mechanical and Electrical Interaction of Biological Membranes with Nanoparticles and Nanostructured Surfaces.Membranes (Basel). 2021 Jul 14;11(7):533. doi: 10.3390/membranes11070533. Membranes (Basel). 2021. PMID: 34357183 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
