The ear region of earliest known elephant relatives: new light on the ancestral morphotype of proboscideans and afrotherians

J Anat. 2016 Jan;228(1):137-52. doi: 10.1111/joa.12396. Epub 2015 Oct 29.

Abstract

One of the last major clades of placental mammals recognized was the Afrotheria, which comprises all main endemic African mammals. This group includes the ungulate-like paenungulates, and among them the elephant order Proboscidea. Among afrotherians, the petrosal anatomy remains especially poorly known in Proboscidea. We provide here the first comparative CT scan study of the ear region of the two earliest known proboscideans (and paenungulates), Eritherium and Phosphatherium, from the mid Palaeocene and early Eocene of Morocco. It is helpful to characterize the ancestral morphotype of Proboscidea to understand petrosal evolution within proboscideans and afrotherians. The petrosal structure of these two taxa shows several differences. Eritherium is more primitive than Phosphatherium and closer to the basal paenungulate Ocepeia in several traits (inflated tegmen tympani, very deep fossa subarcuata and ossified canal for ramus superior of stapedial artery). Phosphatherium, however, retains plesiomorphies such as a true crus commune secundaria. A cladistic analysis of petrosal traits of Eritherium and Phosphatherium among Proboscidea results in a single tree with a low level of homoplasy in which Eritherium, Phosphatherium and Numidotherium are basal. This contrasts with previous phylogenetic studies showing homoplasy in petrosal evolution among Tethytheria. It suggests that evolutionary modalities of petrosal characters differ with the taxonomic level among Afrotheria: noticeable convergences occurred among the paenungulate orders, whereas little homoplasy seems to have occurred at intra-ordinal level in orders such as Proboscidea. Most petrosal features of both Eritherium and Phosphatherium are primitive. The ancestral petrosal morphotype of Proboscidea was not specialized but was close to the generalized condition of paenungulates, afrotherians, and even eutherians. This is consistent with cranial and dental characters of Eritherium, suggesting that the ancestral morphotypes of the different paenungulate orders were close to each other. Specializations occurred rapidly after the ordinal radiation of Paenungulata.

Keywords: Afrotheria; CT scan; Eritherium; Phosphatherium; petrosal; phylogeny; proboscidea.

MeSH terms

  • Animals
  • Biological Evolution
  • Ear, Inner / anatomy & histology*
  • Ear, Middle / anatomy & histology*
  • Elephants / anatomy & histology*
  • Evolution, Molecular
  • Fossils
  • Phylogeny
  • Proboscidea Mammal / anatomy & histology*
  • Skull / anatomy & histology
  • Tomography, X-Ray Computed