Conserved Role of an N-Linked Glycan on the Surface Antigen of Human Immunodeficiency Virus Type 1 Modulating Virus Sensitivity to Broadly Neutralizing Antibodies against the Receptor and Coreceptor Binding Sites

J Virol. 2015 Oct 28;90(2):829-41. doi: 10.1128/JVI.02321-15. Print 2016 Jan 15.


HIV-1 establishes persistent infection in part due to its ability to evade host immune responses. Occlusion by glycans contributes to masking conserved sites that are targets for some broadly neutralizing antibodies (bNAbs). Previous work has shown that removal of a highly conserved potential N-linked glycan (PNLG) site at amino acid residue 197 (N7) on the surface antigen gp120 of HIV-1 increases neutralization sensitivity of the mutant virus to CD4 binding site (CD4bs)-directed antibodies compared to its wild-type (WT) counterpart. However, it is not clear if the role of the N7 glycan is conserved among diverse HIV-1 isolates and if other glycans in the conserved regions of HIV-1 Env display similar functions. In this work, we examined the role of PNLGs in the conserved region of HIV-1 Env, particularly the role of the N7 glycan in a panel of HIV-1 strains representing different clades, tissue origins, coreceptor usages, and neutralization sensitivities. We demonstrate that the absence of the N7 glycan increases the sensitivity of diverse HIV-1 isolates to CD4bs- and V3 loop-directed antibodies, indicating that the N7 glycan plays a conserved role masking these conserved epitopes. However, the effect of the N7 glycan on virus sensitivity to neutralizing antibodies directed against the V2 loop epitope is isolate dependent. These findings indicate that the N7 glycan plays an important and conserved role modulating the structure, stability, or accessibility of bNAb epitopes in the CD4bs and coreceptor binding region, thus representing a potential target for the design of immunogens and therapeutics.

Importance: N-linked glycans on the HIV-1 envelope protein have been postulated to contribute to viral escape from host immune responses. However, the role of specific glycans in the conserved regions of HIV-1 Env in modulating epitope recognition by broadly neutralizing antibodies has not been well defined. We show here that a single N-linked glycan plays a unique and conserved role among conserved glycans on HIV-1 gp120 in modulating the exposure or the stability of the receptor and coreceptor binding site without affecting the integrity of the Env in mediating viral infection or the ability of the mutant gp120 to bind to CD4. The observation that the antigenicity of the receptor and coreceptor binding sites can be modulated by a single glycan indicates that select glycan modification offers a potential strategy for the design of HIV-1 vaccine candidates.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antibodies, Neutralizing / immunology*
  • Antigens, Surface / chemistry
  • Antigens, Surface / immunology
  • Binding Sites
  • Epitopes / chemistry
  • Epitopes / immunology
  • Glycosylation
  • HIV Antibodies / immunology*
  • HIV Antigens / chemistry
  • HIV Antigens / immunology
  • HIV Envelope Protein gp120 / chemistry
  • HIV Envelope Protein gp120 / immunology*
  • HIV-1 / chemistry
  • HIV-1 / immunology*
  • Humans
  • Polysaccharides / analysis*


  • Antibodies, Neutralizing
  • Antigens, Surface
  • Epitopes
  • HIV Antibodies
  • HIV Antigens
  • HIV Envelope Protein gp120
  • Polysaccharides
  • gp120 protein, Human immunodeficiency virus 1