Biomimetic Mineralization of Recombinamer-Based Hydrogels toward Controlled Morphologies and High Mineral Density

ACS Appl Mater Interfaces. 2015 Nov 25;7(46):25784-92. doi: 10.1021/acsami.5b07628. Epub 2015 Nov 11.


The use of insoluble organic matrices as a structural template for the bottom-up fabrication of organic-inorganic nanocomposites is a powerful way to build a variety of advanced materials with defined and controlled morphologies and superior mechanical properties. Calcium phosphate mineralization in polymeric hydrogels is receiving significant attention in terms of obtaining biomimetic hierarchical structures with unique mechanical properties and understanding the mechanisms of the biomineralization process. However, integration of organic matrices with hydroxyapatite nanocrystals, different in morphology and composition, has not been well-achieved yet at nanoscale. In this study, we synthesized thermoresponsive hydrogels, composed of elastin-like recombinamers (ELRs), to template mineralization of hydroxyapatite nanocrystals using a biomimetic polymer-induced liquid-precursor (PILP) mineralization process. Different from conventional mineralization where minerals were deposited on the surface of organic matrices, they were infiltrated into the frameworks of ELR matrices, preserving their microporous structure. After 14 days of mineralization, an average of 78 μm mineralization depth was achieved. Mineral density up to 1.9 g/cm(3) was found after 28 days of mineralization, which is comparable to natural bone and dentin. In the dry state, the elastic modulus and hardness of the mineralized hydrogels were 20.3 ± 1.7 and 0.93 ± 0.07 GPa, respectively. After hydration, they were reduced to 4.50 ± 0.55 and 0.10 ± 0.03 GPa, respectively. These values were lower but still on the same order of magnitude as those of natural hard tissues. The results indicated that inorganic-organic hybrid biomaterials with controlled morphologies can be achieved using organic templates of ELRs. Notably, the chemical and physical properties of ELRs can be tuned, which might help elucidate the mechanisms by which living organisms regulate the mineralization process.

Keywords: bone; dentine; elastin-like recombinamers; hydrogel; mineralization.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Biomimetics / methods*
  • Bone Density / drug effects*
  • Calcification, Physiologic / drug effects*
  • Cattle
  • Elastin / chemistry
  • Elastin / pharmacology*
  • Hydrogels / pharmacology*
  • Microscopy, Electron, Transmission
  • Molecular Sequence Data
  • Temperature
  • X-Ray Diffraction
  • X-Ray Microtomography


  • Hydrogels
  • Elastin