Retroactive modulation of spike timing-dependent plasticity by dopamine
- PMID: 26516682
- PMCID: PMC4626806
- DOI: 10.7554/eLife.09685
Retroactive modulation of spike timing-dependent plasticity by dopamine
Abstract
Most reinforcement learning models assume that the reward signal arrives after the activity that led to the reward, placing constraints on the possible underlying cellular mechanisms. Here we show that dopamine, a positive reinforcement signal, can retroactively convert hippocampal timing-dependent synaptic depression into potentiation. This effect requires functional NMDA receptors and is mediated in part through the activation of the cAMP/PKA cascade. Collectively, our results support the idea that reward-related signaling can act on a pre-established synaptic eligibility trace, thereby associating specific experiences with behaviorally distant, rewarding outcomes. This finding identifies a biologically plausible mechanism for solving the 'distal reward problem'.
Keywords: dopamine; mouse; neuroscience; reward; synaptic plasticity.
Conflict of interest statement
WS: Reviewing editor,
The other authors declare that no competing interests exist.
Figures
Similar articles
-
A silent eligibility trace enables dopamine-dependent synaptic plasticity for reinforcement learning in the mouse striatum.Eur J Neurosci. 2019 Mar;49(5):726-736. doi: 10.1111/ejn.13921. Epub 2018 Apr 14. Eur J Neurosci. 2019. PMID: 29603470 Free PMC article.
-
Postsynaptic burst reactivation of hippocampal neurons enables associative plasticity of temporally discontiguous inputs.Elife. 2022 Oct 13;11:e81071. doi: 10.7554/eLife.81071. Elife. 2022. PMID: 36226826 Free PMC article.
-
Dopamine-enabled anti-Hebbian timing-dependent plasticity in prefrontal circuitry.Front Neural Circuits. 2014 Apr 23;8:38. doi: 10.3389/fncir.2014.00038. eCollection 2014. Front Neural Circuits. 2014. PMID: 24795571 Free PMC article.
-
Striatal action-learning based on dopamine concentration.Exp Brain Res. 2010 Jan;200(3-4):307-17. doi: 10.1007/s00221-009-2060-6. Epub 2009 Nov 11. Exp Brain Res. 2010. PMID: 19904530 Review.
-
Plasticity, hippocampal place cells, and cognitive maps.Arch Neurol. 2001 Jun;58(6):874-81. doi: 10.1001/archneur.58.6.874. Arch Neurol. 2001. PMID: 11405801 Review.
Cited by
-
Adaptive Extreme Edge Computing for Wearable Devices.Front Neurosci. 2021 May 11;15:611300. doi: 10.3389/fnins.2021.611300. eCollection 2021. Front Neurosci. 2021. PMID: 34045939 Free PMC article. Review.
-
Dopamine: The Neuromodulator of Long-Term Synaptic Plasticity, Reward and Movement Control.Cells. 2021 Mar 26;10(4):735. doi: 10.3390/cells10040735. Cells. 2021. PMID: 33810328 Free PMC article. Review.
-
Dopamine D1-Receptor Organization Contributes to Functional Brain Architecture.J Neurosci. 2024 Mar 13;44(11):e0621232024. doi: 10.1523/JNEUROSCI.0621-23.2024. J Neurosci. 2024. PMID: 38302439 Free PMC article.
-
A brain-inspired algorithm that mitigates catastrophic forgetting of artificial and spiking neural networks with low computational cost.Sci Adv. 2023 Aug 25;9(34):eadi2947. doi: 10.1126/sciadv.adi2947. Epub 2023 Aug 25. Sci Adv. 2023. PMID: 37624895 Free PMC article.
-
Dopamine Receptor Activation Is Required for GABAergic Spike Timing-Dependent Plasticity in Response to Complex Spike Pairing in the Ventral Tegmental Area.Front Synaptic Neurosci. 2018 Sep 21;10:32. doi: 10.3389/fnsyn.2018.00032. eCollection 2018. Front Synaptic Neurosci. 2018. PMID: 30297996 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
