Metabotropic glutamate receptor 4 (mGluR4) possesses immune modulatory properties in vivo, such that a positive allosteric modulator (PAM) of the receptor confers protection on mice with relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE). ADX88178 is a newly-developed, one such mGluR4 modulator with high selectivity, potency, and optimized pharmacokinetics. Here we found that application of ADX88178 in the RR-EAE model system converted disease into a form of mild-yet chronic-neuroinflammation that remained stable for over two months after discontinuing drug treatment. In vitro, ADX88178 modulated the cytokine secretion profile of dendritic cells (DCs), increasing production of tolerogenic IL-10 and TGF-β. The in vitro effects required activation of a Gi-independent, alternative signaling pathway that involved phosphatidylinositol-3-kinase (PI3K), Src kinase, and the signaling activity of indoleamine 2,3-dioxygenase 1 (IDO1). A PI3K inhibitor as well as small interfering RNA targeting Ido1-but not pertussis toxin, which affects Gi protein-dependent responses-abrogated the tolerogenic effects of ADX88178-conditioned DCs in vivo. Thus our data indicate that, in DCs, highly selective and potent mGluR4 PAMs such as ADX88178 may activate a Gi-independent, long-lived regulatory pathway that could be therapeutically exploited in chronic autoimmune diseases such as multiple sclerosis.
Keywords: Autoimmunity; Dendritic cells; Immune regulation; Indoleamine 2,3-dioxygenase 1; Neuroinflammation; Noncanonical GPCR signaling; PI3K; Src kinase; Tryptophan metabolism; mGluR4.
Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.