Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar;209(4):1655-67.
doi: 10.1111/nph.13710. Epub 2015 Nov 2.

The syntaxin protein (MoSyn8) mediates intracellular trafficking to regulate conidiogenesis and pathogenicity of rice blast fungus

Affiliations
Free article

The syntaxin protein (MoSyn8) mediates intracellular trafficking to regulate conidiogenesis and pathogenicity of rice blast fungus

Zhongqiang Qi et al. New Phytol. 2016 Mar.
Free article

Abstract

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate cellular membrane fusion and intracellular vesicle trafficking in eukaryotic cells, and are critical in the growth and development of pathogenic fungi such as Magnaporthe oryzae which causes rice blast. Rice blast is thought to involve distinct SNARE-mediated transport and secretion of fungal effector proteins into the host to modulate rice immunity. We have previously characterized two SNARE proteins, secretory protein (MoSec22) and vesicle-associated membrane protein (MoVam7), as being important in cellular transport and pathogenicity. Here, we show that syntaxin 8 (MoSyn8), a Qc-SNARE protein homolog, also plays important roles in growth, conidiation, and pathogenicity. The MoSYN8 deletion mutant (∆Mosyn8) mutant exhibits defects in endocytosis and F-actin organization, appressorium turgor pressure generation, and host penetration. In addition, the ∆Mosyn8 mutant cannot elaborate biotrophic invasion of the susceptible rice host, or secrete avirulence factors Avr-Pia (corresponding to the rice resistance gene Pia) and Avrpiz-t (the cognate Avr gene for the resistance gene Piz-t) proteins. Our study of MoSyn8 advances our understanding of SNARE proteins in effector secretion which underlies the normal physiology and pathogenicity of M. oryzae, and it sheds new light on the mechanism of the blight disease caused by M. oryzae.

Keywords: Magnapother oryzae; Qc-SNARE; conidiogenesis; endocytosis; pathogenesis; secretion.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources