Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Dec 17:311:362-73.
doi: 10.1016/j.neuroscience.2015.10.049. Epub 2015 Oct 30.

Involvement of endoplasmic reticulum stress in the necroptosis of microglia/macrophages after spinal cord injury

Affiliations

Involvement of endoplasmic reticulum stress in the necroptosis of microglia/macrophages after spinal cord injury

H Fan et al. Neuroscience. .

Abstract

Microglia/macrophages play a crucial role in inflammation after spinal cord injury (SCI). Although extensive studies have been performed on the mechanisms of microglia/macrophage activation and recruitment, how microglia/macrophages are eliminated remains unclear. In the present study, we observed a high-level expression of mixed lineage kinase domain-like protein (MLKL), a key molecule in the execution of necroptosis, in microglia/macrophages after SCI in mice. In vivo PI-labeling and Necrostatin-1 treatment confirmed the necroptosis of microglia/macrophages. Interestingly, our electronic microscopic (EM) study revealed that MLKL localized not only at the membrane but also on the endoplasmic reticulum (ER) of necroptotic microglia/macrophages. Furthermore, receptor-interacting protein 3 (RIP3), another necrosome component, was also found on the ER of necroptotic microglia/macrophages. And Glucose-regulated protein 78 (GRP78), an ER stress sensor, was up-regulated in MLKL-positive microglia/macrophages after SCI, suggesting a possible link between necroptosis and ER stress. In vitro, oxygen-glucose deprivation (OGD) stress induced ER stress and necroptosis in microglia. Inhibiting ER stress by 4-phenylbutyrate (4-PBA) significantly blocked the OGD-induced necroptosis of microglia. In the end, our data showed that, GRP78 and phosphorylated MLKL were co-expressed by the microglia/macrophages in the injured human spinal cord. Taken together, these results suggested that microglia/macrophages undergo an ER-stress involved necroptosis after SCI, implying that ER stress and necroptosis could be manipulated for modulating inflammation post-SCI.

Keywords: ER stress; microglia/macrophage; necroptosis; spinal cord injury.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources