Similar Hemoglobin Mass Response in Hypobaric and Normobaric Hypoxia in Athletes

Med Sci Sports Exerc. 2016 Apr;48(4):734-41. doi: 10.1249/MSS.0000000000000808.


Purpose: To compare hemoglobin mass (Hb(mass)) changes during an 18-d live high-train low (LHTL) altitude training camp in normobaric hypoxia (NH) and hypobaric hypoxia (HH).

Methods: Twenty-eight well-trained male triathletes were split into three groups (NH: n = 10, HH: n = 11, control [CON]: n = 7) and participated in an 18-d LHTL camp. NH and HH slept at 2250 m, whereas CON slept, and all groups trained at altitudes <1200 m. Hb(mass) was measured in duplicate with the optimized carbon monoxide rebreathing method before (pre-), immediately after (post-) (hypoxic dose: 316 vs 238 h for HH and NH), and at day 13 in HH (230 h, hypoxic dose matched to 18-d NH). Running (3-km run) and cycling (incremental cycling test) performances were measured pre and post.

Results: Hb(mass) increased similar in HH (+4.4%, P < 0.001 at day 13; +4.5%, P < 0.001 at day 18) and NH (+4.1%, P < 0.001) compared with CON (+1.9%, P = 0.08). There was a wide variability in individual Hb(mass) responses in HH (-0.1% to +10.6%) and NH (-1.4% to +7.7%). Postrunning time decreased in HH (-3.9%, P < 0.001), NH (-3.3%, P < 0.001), and CON (-2.1%, P = 0.03), whereas cycling performance changed nonsignificantly in HH and NH (+2.4%, P > 0.08) and remained unchanged in CON (+0.2%, P = 0.89).

Conclusion: HH and NH evoked similar Hb(mass) increases for the same hypoxic dose and after 18-d LHTL. The wide variability in individual Hb(mass) responses in HH and NH emphasizes the importance of individual Hb(mass) evaluation of altitude training.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Altitude*
  • Athletes
  • Athletic Performance
  • Bicycling / physiology*
  • Exercise Test
  • Hemoglobins / analysis*
  • Humans
  • Hypoxia / blood*
  • Male
  • Running / physiology*
  • Young Adult


  • Hemoglobins