Production of hyperpolarized 13 CO 2 from [1- 13 C]pyruvate in perfused liver does reflect total anaplerosis but is not a reliable biomarker of glucose production

Metabolomics. 2015 Oct;11(5):1144-1156. doi: 10.1007/s11306-014-0768-1. Epub 2015 Jan 9.

Abstract

In liver, 13CO2 can be generated from [1-13C] pyruvate via pyruvate dehydrogenase or anaplerotic entry of pyruvate into the TCA cycle followed by decarboxylation at phosphoenolpyruvate carboxykinase (PEPCK), the malic enzyme, isocitrate dehydrogenase, or α-ketoglutarate dehydrogenase. The purpose of this study was to determine the relative importance of these pathways in production of hyperpolarized (HP) 13CO2 after administration of hyper-polarized pyruvate in livers supplied with a fatty acid plus substrates for gluconeogenesis. Isolated mouse livers were perfused with a mixture of thermally-polarized 13C-enriched pyruvate, lactate and octanoate in various combinations prior to exposure to HP pyruvate. Under all perfusion conditions, HP malate, aspartate and fumarate were detected within ~ 3 s showing that HP [1-13C]pyruvate is rapidly converted to [1-13C]oxaloacetate which can subsequently produce HP 13CO2 via decarboxylation at PEPCK. Measurements using HP [2-13C]pyruvate allowed the exclusion of reactions related to TCA cycle turnover as sources of HP 13CO2. Direct measures of O2 consumption, ketone production, and glucose production by the intact liver combined with 13C isotopomer analyses of tissue extracts yielded a comprehensive profile of metabolic flux in perfused liver. Together, these data show that, even though the majority of HP 13CO2 derived from HP [1-13C]pyruvate in livers exposed to fatty acids reflects decarboxylation of [4-13C]oxaloacetate (PEPCK) or [4-13C]malate (malic enzyme), the intensity of the HP 13CO2 signal is not proportional to glucose production because the amount of pyruvate returned to the TCA cycle via PEPCK and pyruvate kinase is variable, depending upon available substrates.

Keywords: Gluconeogenesis; Hyperpolarization; Hyperpolarized 13CO2 production; Liver metabolism; Pyruvate cycling.