Estimation and uncertainty of reversible Markov models
- PMID: 26547152
- DOI: 10.1063/1.4934536
Estimation and uncertainty of reversible Markov models
Abstract
Reversibility is a key concept in Markov models and master-equation models of molecular kinetics. The analysis and interpretation of the transition matrix encoding the kinetic properties of the model rely heavily on the reversibility property. The estimation of a reversible transition matrix from simulation data is, therefore, crucial to the successful application of the previously developed theory. In this work, we discuss methods for the maximum likelihood estimation of transition matrices from finite simulation data and present a new algorithm for the estimation if reversibility with respect to a given stationary vector is desired. We also develop new methods for the Bayesian posterior inference of reversible transition matrices with and without given stationary vector taking into account the need for a suitable prior distribution preserving the meta-stable features of the observed process during posterior inference. All algorithms here are implemented in the PyEMMA software--http://pyemma.org--as of version 2.0.
Similar articles
-
PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models.J Chem Theory Comput. 2015 Nov 10;11(11):5525-42. doi: 10.1021/acs.jctc.5b00743. Epub 2015 Oct 14. J Chem Theory Comput. 2015. PMID: 26574340
-
Efficient Bayesian estimation of Markov model transition matrices with given stationary distribution.J Chem Phys. 2013 Apr 28;138(16):164113. doi: 10.1063/1.4801325. J Chem Phys. 2013. PMID: 23635117
-
Estimating the sampling error: distribution of transition matrices and functions of transition matrices for given trajectory data.Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021106. doi: 10.1103/PhysRevE.80.021106. Epub 2009 Aug 13. Phys Rev E Stat Nonlin Soft Matter Phys. 2009. PMID: 19792076
-
Probability distributions of molecular observables computed from Markov models.J Chem Phys. 2008 Jun 28;128(24):244103. doi: 10.1063/1.2916718. J Chem Phys. 2008. PMID: 18601313
-
A Bayesian method for construction of Markov models to describe dynamics on various time-scales.J Chem Phys. 2010 Oct 14;133(14):144113. doi: 10.1063/1.3496438. J Chem Phys. 2010. PMID: 20949993
Cited by
-
Deep learning to decompose macromolecules into independent Markovian domains.Nat Commun. 2022 Nov 19;13(1):7101. doi: 10.1038/s41467-022-34603-z. Nat Commun. 2022. PMID: 36402768 Free PMC article.
-
Identification of Druggable Kinase Target Conformations Using Markov Model Metastable States Analysis of apo-Abl.J Chem Theory Comput. 2020 Mar 10;16(3):1896-1912. doi: 10.1021/acs.jctc.9b01158. Epub 2020 Feb 13. J Chem Theory Comput. 2020. PMID: 31999924 Free PMC article.
-
Thermodynamically consistent determination of free energies and rates in kinetic cycle models.bioRxiv [Preprint]. 2023 Aug 7:2023.04.08.536126. doi: 10.1101/2023.04.08.536126. bioRxiv. 2023. Update in: Biophys Rep (N Y). 2023 Aug 02;3(3):100120. doi: 10.1016/j.bpr.2023.100120 PMID: 37066357 Free PMC article. Updated. Preprint.
-
Comparative Analysis of Conformational Dynamics and Systematic Characterization of Cryptic Pockets in the SARS-CoV-2 Omicron BA.2, BA.2.75 and XBB.1 Spike Complexes with the ACE2 Host Receptor: Confluence of Binding and Structural Plasticity in Mediating Networks of Conserved Allosteric Sites.Viruses. 2023 Oct 10;15(10):2073. doi: 10.3390/v15102073. Viruses. 2023. PMID: 37896850 Free PMC article.
-
Markov State Model of Lassa Virus Nucleoprotein Reveals Large Structural Changes during the Trimer to Monomer Transition.Structure. 2020 May 5;28(5):548-554.e3. doi: 10.1016/j.str.2020.03.002. Epub 2020 Mar 31. Structure. 2020. PMID: 32234493 Free PMC article.
Publication types
LinkOut - more resources
Full Text Sources
