Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster
- PMID: 26568309
- PMCID: PMC4749392
- DOI: 10.7554/eLife.09861
Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster
Abstract
Insect cuticular hydrocarbons (CHCs) prevent desiccation and serve as chemical signals that mediate social interactions. Drosophila melanogaster CHCs have been studied extensively, but the genetic basis for individual variation in CHC composition is largely unknown. We quantified variation in CHC profiles in the D. melanogaster Genetic Reference Panel (DGRP) and identified novel CHCs. We used principal component (PC) analysis to extract PCs that explain the majority of CHC variation and identified polymorphisms in or near 305 and 173 genes in females and males, respectively, associated with variation in these PCs. In addition, 17 DGRP lines contain the functional Desat2 allele characteristic of African and Caribbean D. melanogaster females (more 5,9-C27:2 and less 7,11-C27:2, female sex pheromone isomers). Disruption of expression of 24 candidate genes affected CHC composition in at least one sex. These genes are associated with fatty acid metabolism and represent mechanistic targets for individual variation in CHC composition.
Keywords: African Drosophila; Drosophila genetic reference Panel; cuticular lipids; drosophila melanogaster; evolutionary biology; genome wide associaiton study; genomics; multivariate analysis.
Conflict of interest statement
The authors declare that no competing interests exist.
Figures
Similar articles
-
Quantitative genetic analysis suggests causal association between cuticular hydrocarbon composition and desiccation survival in Drosophila melanogaster.Heredity (Edinb). 2011 Jan;106(1):68-77. doi: 10.1038/hdy.2010.40. Epub 2010 Apr 14. Heredity (Edinb). 2011. PMID: 20389309 Free PMC article.
-
Genes underlying species differences in cuticular hydrocarbon production between Drosophila melanogaster and D. simulans.Genome. 2021 Feb;64(2):87-95. doi: 10.1139/gen-2019-0224. Epub 2020 Nov 19. Genome. 2021. PMID: 33211537
-
The genetic basis of female pheromone differences between Drosophila melanogaster and D. simulans.Heredity (Edinb). 2019 Jan;122(1):93-109. doi: 10.1038/s41437-018-0080-3. Epub 2018 May 19. Heredity (Edinb). 2019. PMID: 29777168 Free PMC article.
-
Advances in deciphering the genetic basis of insect cuticular hydrocarbon biosynthesis and variation.Heredity (Edinb). 2021 Feb;126(2):219-234. doi: 10.1038/s41437-020-00380-y. Epub 2020 Nov 2. Heredity (Edinb). 2021. PMID: 33139902 Free PMC article. Review.
-
A review of ant cuticular hydrocarbons.J Chem Ecol. 2009 Oct;35(10):1151-61. doi: 10.1007/s10886-009-9695-4. Epub 2009 Oct 29. J Chem Ecol. 2009. PMID: 19866237 Review.
Cited by
-
The genetic basis of incipient sexual isolation in Drosophila melanogaster.Proc Biol Sci. 2024 Aug;291(2027):20240672. doi: 10.1098/rspb.2024.0672. Epub 2024 Jul 24. Proc Biol Sci. 2024. PMID: 39045689 Free PMC article.
-
Transcriptional Control of Quality Differences in the Lipid-Based Cuticle Barrier in Drosophila suzukii and Drosophila melanogaster.Front Genet. 2020 Aug 6;11:887. doi: 10.3389/fgene.2020.00887. eCollection 2020. Front Genet. 2020. PMID: 32849846 Free PMC article.
-
Flying Drosophila show sex-specific attraction to fly-labelled food.Sci Rep. 2019 Oct 18;9(1):14947. doi: 10.1038/s41598-019-51351-1. Sci Rep. 2019. PMID: 31628403 Free PMC article.
-
Symbiont-Driven Male Mating Success in the Neotropical Drosophila paulistorum Superspecies.Behav Genet. 2019 Jan;49(1):83-98. doi: 10.1007/s10519-018-9937-8. Epub 2018 Nov 19. Behav Genet. 2019. PMID: 30456532 Free PMC article.
-
Obp56h Modulates Mating Behavior in Drosophila melanogaster.G3 (Bethesda). 2016 Oct 13;6(10):3335-3342. doi: 10.1534/g3.116.034595. G3 (Bethesda). 2016. PMID: 27558663 Free PMC article.
References
-
- Antony C, Jallon J-M. The chemical basis for sex recognition in Drosophila melanogaster. Journal of Insect Physiology. 1982;28:873–880. doi: 10.1016/0022-1910(82)90101-9. - DOI
-
- Blomquist GJ, Bagnères A-G. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge: Cambridge University Press; 2010. - DOI
-
- Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Sanchez Villeda H, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD. The genetic architecture of maize flowering time. Science. 2009;325:714–718. doi: 10.1126/science.1174276. - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
