Motivation: Optimizing seed selection is an important problem in read mapping. The number of non-overlapping seeds a mapper selects determines the sensitivity of the mapper while the total frequency of all selected seeds determines the speed of the mapper. Modern seed-and-extend mappers usually select seeds with either an equal and fixed-length scheme or with an inflexible placement scheme, both of which limit the ability of the mapper in selecting less frequent seeds to speed up the mapping process. Therefore, it is crucial to develop a new algorithm that can adjust both the individual seed length and the seed placement, as well as derive less frequent seeds.
Results: We present the Optimal Seed Solver (OSS), a dynamic programming algorithm that discovers the least frequently-occurring set of x seeds in an L-base-pair read in [Formula: see text] operations on average and in [Formula: see text] operations in the worst case, while generating a maximum of [Formula: see text] seed frequency database lookups. We compare OSS against four state-of-the-art seed selection schemes and observe that OSS provides a 3-fold reduction in average seed frequency over the best previous seed selection optimizations.
Availability and implementation: We provide an implementation of the Optimal Seed Solver in C++ at: https://github.com/CMU-SAFARI/Optimal-Seed-Solver
Contact: hxin@cmu.edu, calkan@cs.bilkent.edu.tr or onur@cmu.edu
Supplementary information: Supplementary data are available at Bioinformatics online.
© The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.