Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning

J Chem Theory Comput. 2015 Apr 14;11(4):1864-74. doi: 10.1021/ct5010406. Epub 2015 Mar 30.


Previous studies have shown that the method of hydrogen mass repartitioning (HMR) is a potentially useful tool for accelerating molecular dynamics (MD) simulations. By repartitioning the mass of heavy atoms into the bonded hydrogen atoms, it is possible to slow the highest-frequency motions of the macromolecule under study, thus allowing the time step of the simulation to be increased by up to a factor of 2. In this communication, we investigate further how this mass repartitioning allows the simulation time step to be increased in a stable fashion without significantly increasing discretization error. To this end, we ran a set of simulations with different time steps and mass distributions on a three-residue peptide to get a comprehensive view of the effect of mass repartitioning and time step increase on a system whose accessible phase space is fully explored in a relatively short amount of time. We next studied a 129-residue protein, hen egg white lysozyme (HEWL), to verify that the observed behavior extends to a larger, more-realistic, system. Results for the protein include structural comparisons from MD trajectories, as well as comparisons of pKa calculations via constant-pH MD. We also calculated a potential of mean force (PMF) of a dihedral rotation for the MTS [(1-oxyl-2,2,5,5-tetramethyl-pyrroline-3-methyl)methanethiosulfonate] spin label via umbrella sampling with a set of regular MD trajectories, as well as a set of mass-repartitioned trajectories with a time step of 4 fs. Since no significant difference in kinetics or thermodynamics is observed by the use of fast HMR trajectories, further evidence is provided that long-time-step HMR MD simulations are a viable tool for accelerating MD simulations for molecules of biochemical interest.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Chickens
  • Hydrogen / chemistry*
  • Kinetics
  • Molecular Dynamics Simulation*
  • Muramidase / chemistry*
  • Muramidase / metabolism
  • Principal Component Analysis
  • Spin Labels
  • Thermodynamics


  • Spin Labels
  • Hydrogen
  • hen egg lysozyme
  • Muramidase