7-Chloro-5-(furan-3-yl)-3-methyl-4H-benzo[e][1,2,4]thiadiazine 1,1-Dioxide as Positive Allosteric Modulator of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor. The End of the Unsaturated-Inactive Paradigm?

ACS Chem Neurosci. 2016 Feb 17;7(2):149-60. doi: 10.1021/acschemneuro.5b00257. Epub 2015 Dec 2.

Abstract

5-Arylbenzothiadiazine type compounds acting as positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-PAMs) have received particular attention in the past decade for their nootropic activity and lack of the excitotoxic side effects of direct agonists. Recently, our research group has published the synthesis and biological activity of 7-chloro-5-(3-furanyl)-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (1), one of the most active benzothiadiazine-derived AMPA-PAMs in vitro to date. However, 1 exists as two stereolabile enantiomers, which rapidly racemize in physiological conditions, and only one isomer is responsible for the pharmacological activity. In the present work, experiments carried out with rat liver microsomes show that 1 is converted by hepatic cytochrome P450 to the corresponding unsaturated derivative 2 and to the corresponding pharmacologically inactive benzenesulfonamide 3. Surprisingly, patch-clamp experiments reveal that 2 displays an activity comparable to that of the parent compound. Molecular modeling studies were performed to rationalize these results. Furthermore, mice cerebral microdialysis studies suggest that 2 is able to cross the blood-brain barrier and increases acetylcholine and serotonin levels in the hippocampus. The experimental data disclose that the achiral hepatic metabolite 2 possesses the same pharmacological activity of its parent compound 1 but with an enhanced chemical and stereochemical stability, as well as an improved pharmacokinetic profile compared with 1.

Keywords: AMPA receptor; benzothiadiazines; central nervous system; hepatic metabolism; microdialysis; neurotransmitters.

MeSH terms

  • Action Potentials / drug effects
  • Animals
  • Animals, Newborn
  • Cells, Cultured
  • Cerebellum / cytology
  • Corpus Striatum / drug effects
  • Excitatory Amino Acid Agonists / chemistry*
  • Excitatory Amino Acid Agonists / pharmacology*
  • Furans / chemistry
  • Furans / pharmacology
  • Mice
  • Microdialysis
  • Models, Molecular
  • Neurons / drug effects*
  • Neurotransmitter Agents / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, AMPA / metabolism*
  • Stereoisomerism
  • Tandem Mass Spectrometry
  • Thiadiazines / chemistry
  • Thiadiazines / pharmacology
  • alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid / chemistry*
  • alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid / pharmacology*

Substances

  • 7-chloro-5-(furan-3-yl)-3-methyl-4H-benzo(e)(1,2,4)thiadiazine 1,1-dioxide
  • Excitatory Amino Acid Agonists
  • Furans
  • Neurotransmitter Agents
  • Receptors, AMPA
  • Thiadiazines
  • alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid