OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins
- PMID: 26584231
- DOI: 10.1021/acs.jctc.5b00864
OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins
Abstract
The parametrization and validation of the OPLS3 force field for small molecules and proteins are reported. Enhancements with respect to the previous version (OPLS2.1) include the addition of off-atom charge sites to represent halogen bonding and aryl nitrogen lone pairs as well as a complete refit of peptide dihedral parameters to better model the native structure of proteins. To adequately cover medicinal chemical space, OPLS3 employs over an order of magnitude more reference data and associated parameter types relative to other commonly used small molecule force fields (e.g., MMFF and OPLS_2005). As a consequence, OPLS3 achieves a high level of accuracy across performance benchmarks that assess small molecule conformational propensities and solvation. The newly fitted peptide dihedrals lead to significant improvements in the representation of secondary structure elements in simulated peptides and native structure stability over a number of proteins. Together, the improvements made to both the small molecule and protein force field lead to a high level of accuracy in predicting protein-ligand binding measured over a wide range of targets and ligands (less than 1 kcal/mol RMS error) representing a 30% improvement over earlier variants of the OPLS force field.
Similar articles
-
OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules.J Chem Theory Comput. 2019 Mar 12;15(3):1863-1874. doi: 10.1021/acs.jctc.8b01026. Epub 2019 Mar 4. J Chem Theory Comput. 2019. PMID: 30768902
-
A new force field (ECEPP-05) for peptides, proteins, and organic molecules.J Phys Chem B. 2006 Mar 16;110(10):5025-44. doi: 10.1021/jp054994x. J Phys Chem B. 2006. PMID: 16526746
-
ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB.J Chem Theory Comput. 2015 Aug 11;11(8):3696-713. doi: 10.1021/acs.jctc.5b00255. Epub 2015 Jul 23. J Chem Theory Comput. 2015. PMID: 26574453 Free PMC article.
-
Structure-based druggability assessment--identifying suitable targets for small molecule therapeutics.Curr Opin Chem Biol. 2011 Aug;15(4):463-8. doi: 10.1016/j.cbpa.2011.05.020. Epub 2011 Jun 23. Curr Opin Chem Biol. 2011. PMID: 21704549 Review.
-
Validation of Protein-Ligand Crystal Structure Models: Small Molecule and Peptide Ligands.Methods Mol Biol. 2017;1607:611-625. doi: 10.1007/978-1-4939-7000-1_25. Methods Mol Biol. 2017. PMID: 28573591 Review.
Cited by
-
Experimental and Computational Models for Side Chain Discrimination in Peptide-Protein Interactions.Chemistry. 2021 Jul 26;27(42):10883-10897. doi: 10.1002/chem.202100890. Epub 2021 Jun 25. Chemistry. 2021. PMID: 33908678 Free PMC article.
-
Structure-based identification of SARS-CoV-2 main protease inhibitors from anti-viral specific chemical libraries: an exhaustive computational screening approach.Mol Divers. 2021 Aug;25(3):1979-1997. doi: 10.1007/s11030-021-10214-6. Epub 2021 Apr 12. Mol Divers. 2021. PMID: 33844135 Free PMC article.
-
Structural impact of GTP binding on downstream KRAS signaling.Chem Sci. 2020 Aug 19;11(34):9272-9289. doi: 10.1039/d0sc03441j. Chem Sci. 2020. PMID: 34094198 Free PMC article.
-
Identification of a G-Protein-Independent Activator of GIRK Channels.Cell Rep. 2020 Jun 16;31(11):107770. doi: 10.1016/j.celrep.2020.107770. Cell Rep. 2020. PMID: 32553165 Free PMC article.
-
A First-in-Class Pyrazole-isoxazole Enhanced Antifungal Activity of Voriconazole: Synergy Studies in an Azole-Resistant Candida albicans Strain, Computational Investigation and in Vivo Validation in a Galleria mellonella Fungal Infection Model.J Med Chem. 2024 Aug 22;67(16):14256-14276. doi: 10.1021/acs.jmedchem.4c01109. Epub 2024 Aug 8. J Med Chem. 2024. PMID: 39115219
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources
Research Materials