Nitrogen-Rich Mesoporous Carbon as Anode Material for High-Performance Sodium-Ion Batteries

ACS Appl Mater Interfaces. 2015 Dec 16;7(49):27124-30. doi: 10.1021/acsami.5b06898. Epub 2015 Dec 3.

Abstract

Nitrogen-rich carbon with interconnected mesoporous structure has been simply prepared via a nano-CaCO3 template method, using polyaniline as carbon and nitrogen precursors. The preparation process includes in situ polymerization of aniline in a nano-CaCO3 aqueous solution, carbonization of the composites and removal of the template with diluted hydrochloric acid. Nitrogen sorption shows the carbon-enriched mesopores with a specific surface area of 113 m(2) g(-1). The X-ray photoelectron spectroscopy (XPS) analysis indicates that the carbon has a high nitrogen content of 7.78 at. %, in the forms of pyridinic and pyrrolic, as well as graphitic nitrogen. The nitrogen-rich mesoporous carbon shows a high reversible capacity of 338 mAh g(-1) at a current density of 30 mA g(-1), and good rate performance as well as ultralong cycling durability (110.7 mAh g(-1) at a current density of 500 mA g(-1) over 800 cycles). The excellent sodium storage performance of the nitrogen-rich mesoporous carbon is attributed to its disordered structure with large interlayer distance, interconnected porosity, and the enriched nitrogen heteroatoms.

Keywords: capacity; cycle performance; mesoporous carbon; nitrogen-rich; sodium-ion battery.

Publication types

  • Research Support, Non-U.S. Gov't