The Molecular Basis for Centromere Identity and Function

Nat Rev Mol Cell Biol. 2016 Jan;17(1):16-29. doi: 10.1038/nrm.2015.5. Epub 2015 Nov 25.

Abstract

The centromere is the region of the chromosome that directs its segregation in mitosis and meiosis. Although the functional importance of the centromere has been appreciated for more than 130 years, elucidating the molecular features and properties that enable centromeres to orchestrate chromosome segregation is an ongoing challenge. Most eukaryotic centromeres are defined epigenetically and require the presence of nucleosomes containing the histone H3 variant centromere protein A (CENP-A; also known as CENH3). Ongoing work is providing important molecular insights into the central requirements for centromere identity and propagation, and the mechanisms by which centromeres recruit kinetochores to connect to spindle microtubules.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Centromere / metabolism*
  • DNA / chemistry
  • DNA / metabolism
  • Epigenesis, Genetic
  • Humans
  • Kinetochores / metabolism
  • Models, Biological

Substances

  • DNA