De novo centriole formation in human cells is error-prone and does not require SAS-6 self-assembly
- PMID: 26609813
- PMCID: PMC4709270
- DOI: 10.7554/eLife.10586
De novo centriole formation in human cells is error-prone and does not require SAS-6 self-assembly
Abstract
Vertebrate centrioles normally propagate through duplication, but in the absence of preexisting centrioles, de novo synthesis can occur. Consistently, centriole formation is thought to strictly rely on self-assembly, involving self-oligomerization of the centriolar protein SAS-6. Here, through reconstitution of de novo synthesis in human cells, we surprisingly found that normal looking centrioles capable of duplication and ciliation can arise in the absence of SAS-6 self-oligomerization. Moreover, whereas canonically duplicated centrioles always form correctly, de novo centrioles are prone to structural errors, even in the presence of SAS-6 self-oligomerization. These results indicate that centriole biogenesis does not strictly depend on SAS-6 self-assembly, and may require preexisting centrioles to ensure structural accuracy, fundamentally deviating from the current paradigm.
Keywords: SAS-6; cartwheel; cell biology; centriole; centrosome; cilia; human; self-assembly.
Conflict of interest statement
The authors declare that no competing interests exist.
Figures
Similar articles
-
SAS-6 assembly templated by the lumen of cartwheel-less centrioles precedes centriole duplication.Dev Cell. 2014 Jul 28;30(2):238-45. doi: 10.1016/j.devcel.2014.05.008. Epub 2014 Jul 10. Dev Cell. 2014. PMID: 25017693 Free PMC article.
-
Centriolar SAS-7 acts upstream of SPD-2 to regulate centriole assembly and pericentriolar material formation.Elife. 2017 Jan 16;6:e20353. doi: 10.7554/eLife.20353. Elife. 2017. PMID: 28092264 Free PMC article.
-
A Short CEP135 Splice Isoform Controls Centriole Duplication.Curr Biol. 2015 Oct 5;25(19):2591-6. doi: 10.1016/j.cub.2015.08.039. Epub 2015 Sep 24. Curr Biol. 2015. PMID: 26412126 Free PMC article.
-
Centriole assembly at a glance.J Cell Sci. 2019 Feb 20;132(4):jcs228833. doi: 10.1242/jcs.228833. J Cell Sci. 2019. PMID: 30787112 Review.
-
The PLK4-STIL-SAS-6 module at the core of centriole duplication.Biochem Soc Trans. 2016 Oct 15;44(5):1253-1263. doi: 10.1042/BST20160116. Biochem Soc Trans. 2016. PMID: 27911707 Free PMC article. Review.
Cited by
-
Once and only once: mechanisms of centriole duplication and their deregulation in disease.Nat Rev Mol Cell Biol. 2018 May;19(5):297-312. doi: 10.1038/nrm.2017.127. Epub 2018 Jan 24. Nat Rev Mol Cell Biol. 2018. PMID: 29363672 Free PMC article. Review.
-
Experimental and Natural Induction of de novo Centriole Formation.Front Cell Dev Biol. 2022 Apr 4;10:861864. doi: 10.3389/fcell.2022.861864. eCollection 2022. Front Cell Dev Biol. 2022. PMID: 35445021 Free PMC article. Review.
-
Mechanism and Regulation of Centriole and Cilium Biogenesis.Annu Rev Biochem. 2019 Jun 20;88:691-724. doi: 10.1146/annurev-biochem-013118-111153. Epub 2019 Jan 11. Annu Rev Biochem. 2019. PMID: 30601682 Free PMC article. Review.
-
Sub-centrosomal mapping identifies augmin-γTuRC as part of a centriole-stabilizing scaffold.Nat Commun. 2021 Oct 15;12(1):6042. doi: 10.1038/s41467-021-26252-5. Nat Commun. 2021. PMID: 34654813 Free PMC article.
-
Centrosome Formation in the Bovine Early Embryo.Cells. 2023 May 7;12(9):1335. doi: 10.3390/cells12091335. Cells. 2023. PMID: 37174735 Free PMC article.
References
-
- Abumuslimov SS, Nadezhdina ES, Chentsov I. An electron microscopic study of centriole and centrosome morphogenesis in the early development of the mouse. Tsitologiia. 1994;36:1054–1061. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
