The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1

Cell Res. 2015 Dec;25(12):1299-313. doi: 10.1038/cr.2015.140. Epub 2015 Nov 27.

Abstract

YAP and TAZ are transcriptional co-activators and function as the major effectors of the Hippo tumor suppressor pathway, which controls cell growth, tissue homeostasis, and organ size. Here we show that YAP/TAZ play an essential role in amino acid-induced mTORC1 activation, particularly under nutrient-limiting conditions. Mechanistically, YAP/TAZ act via the TEAD transcription factors to induce expression of the high-affinity leucine transporter LAT1, which is a heterodimeric complex of SLC7A5 and SLC3A2. Deletion of YAP/TAZ abolishes expression of LAT1 and reduces leucine uptake. Re-expression of SLC7A5 in YAP/TAZ knockout cells restores leucine uptake and mTORC1 activation. Moreover, SLC7A5 knockout cells phenocopies YAP/TAZ knockout cells which exhibit defective mTORC1 activation in response to amino acids. We further demonstrate that YAP/TAZ act through SLC7A5 to provide cells with a competitive growth advantage. Our study provides molecular insight into the mechanism of YAP/TAZ target genes in cell growth regulation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing / genetics
  • Adaptor Proteins, Signal Transducing / metabolism*
  • Amino Acids / metabolism*
  • Cell Proliferation
  • Cells, Cultured
  • HEK293 Cells
  • Hippo Signaling Pathway
  • Humans
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Mechanistic Target of Rapamycin Complex 1
  • Multiprotein Complexes / metabolism*
  • Phosphoproteins / genetics
  • Phosphoproteins / metabolism*
  • Protein Serine-Threonine Kinases / metabolism*
  • Signal Transduction*
  • TOR Serine-Threonine Kinases / metabolism*
  • Trans-Activators
  • Transcription Factors
  • Transcriptional Coactivator with PDZ-Binding Motif Proteins
  • YAP-Signaling Proteins

Substances

  • Adaptor Proteins, Signal Transducing
  • Amino Acids
  • Intracellular Signaling Peptides and Proteins
  • Multiprotein Complexes
  • Phosphoproteins
  • Trans-Activators
  • Transcription Factors
  • Transcriptional Coactivator with PDZ-Binding Motif Proteins
  • WWTR1 protein, human
  • YAP-Signaling Proteins
  • YAP1 protein, human
  • Mechanistic Target of Rapamycin Complex 1
  • Protein Serine-Threonine Kinases
  • TOR Serine-Threonine Kinases