Overflow metabolism in Escherichia coli results from efficient proteome allocation
- PMID: 26632588
- PMCID: PMC4843128
- DOI: 10.1038/nature15765
Overflow metabolism in Escherichia coli results from efficient proteome allocation
Abstract
Overflow metabolism refers to the seemingly wasteful strategy in which cells use fermentation instead of the more efficient respiration to generate energy, despite the availability of oxygen. Known as the Warburg effect in the context of cancer growth, this phenomenon occurs ubiquitously for fast-growing cells, including bacteria, fungi and mammalian cells, but its origin has remained unclear despite decades of research. Here we study metabolic overflow in Escherichia coli, and show that it is a global physiological response used to cope with changing proteomic demands of energy biogenesis and biomass synthesis under different growth conditions. A simple model of proteomic resource allocation can quantitatively account for all of the observed behaviours, and accurately predict responses to new perturbations. The key hypothesis of the model, that the proteome cost of energy biogenesis by respiration exceeds that by fermentation, is quantitatively confirmed by direct measurement of protein abundances via quantitative mass spectrometry.
Figures
Similar articles
-
Modelling overflow metabolism in Escherichia coli with flux balance analysis incorporating differential proteomic efficiencies of energy pathways.BMC Syst Biol. 2019 Jan 10;13(1):3. doi: 10.1186/s12918-018-0677-4. BMC Syst Biol. 2019. PMID: 30630470 Free PMC article.
-
A yield-cost tradeoff governs Escherichia coli's decision between fermentation and respiration in carbon-limited growth.NPJ Syst Biol Appl. 2019 May 1;5:16. doi: 10.1038/s41540-019-0093-4. eCollection 2019. NPJ Syst Biol Appl. 2019. PMID: 31069113 Free PMC article.
-
Proteome reallocation in Escherichia coli with increasing specific growth rate.Mol Biosyst. 2015 Apr;11(4):1184-93. doi: 10.1039/c4mb00721b. Mol Biosyst. 2015. PMID: 25712329
-
Regulation of glycolytic flux and overflow metabolism depending on the source of energy generation for energy demand.Biotechnol Adv. 2019 Mar-Apr;37(2):284-305. doi: 10.1016/j.biotechadv.2018.12.007. Epub 2018 Dec 18. Biotechnol Adv. 2019. PMID: 30576718 Review.
-
Why Do Fast-Growing Bacteria Enter Overflow Metabolism? Testing the Membrane Real Estate Hypothesis.Cell Syst. 2017 Aug 23;5(2):95-104. doi: 10.1016/j.cels.2017.06.005. Epub 2017 Jul 26. Cell Syst. 2017. PMID: 28755958 Review.
Cited by
-
Acetate formation during recombinant protein production in Escherichia coli K-12 with an elevated NAD(H) pool.Eng Life Sci. 2019 Sep 8;19(11):770-780. doi: 10.1002/elsc.201900045. eCollection 2019 Nov. Eng Life Sci. 2019. PMID: 32624970 Free PMC article.
-
Metabolic modelling in a dynamic evolutionary framework predicts adaptive diversification of bacteria in a long-term evolution experiment.BMC Evol Biol. 2016 Aug 20;16(1):163. doi: 10.1186/s12862-016-0733-x. BMC Evol Biol. 2016. PMID: 27544664 Free PMC article.
-
A universal trade-off between growth and lag in fluctuating environments.Nature. 2020 Aug;584(7821):470-474. doi: 10.1038/s41586-020-2505-4. Epub 2020 Jul 15. Nature. 2020. PMID: 32669712 Free PMC article.
-
Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis.Proc Natl Acad Sci U S A. 2020 Jan 7;117(1):595-601. doi: 10.1073/pnas.1910849117. Epub 2019 Dec 23. Proc Natl Acad Sci U S A. 2020. PMID: 31871173 Free PMC article.
-
Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models.Nat Commun. 2018 Dec 7;9(1):5252. doi: 10.1038/s41467-018-07652-6. Nat Commun. 2018. PMID: 30531987 Free PMC article.
References
-
- Neidhardt FC, Ingraham JL, Schaechter M. Physiology of the Bacterial Cell: A Molecular Approach. Sinauer Associates Inc; 1990.
-
- De Deken RH. The Crabtree effect: a regulatory system in yeast. J Gen Microbiol. 1966;44:149–156. - PubMed
-
- De Mey M, De Maeseneire S, Soetaert W, Vandamme E. Minimizing acetate formation in E. coli fermentations. J Ind Microbiol Biotechnol. 2007;34:689–700. doi:10.1007/s10295-007-0244-2. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
