Simple, Scalable Proteomic Imaging for High-Dimensional Profiling of Intact Systems

Cell. 2015 Dec 3;163(6):1500-14. doi: 10.1016/j.cell.2015.11.025.

Abstract

Combined measurement of diverse molecular and anatomical traits that span multiple levels remains a major challenge in biology. Here, we introduce a simple method that enables proteomic imaging for scalable, integrated, high-dimensional phenotyping of both animal tissues and human clinical samples. This method, termed SWITCH, uniformly secures tissue architecture, native biomolecules, and antigenicity across an entire system by synchronizing the tissue preservation reaction. The heat- and chemical-resistant nature of the resulting framework permits multiple rounds (>20) of relabeling. We have performed 22 rounds of labeling of a single tissue with precise co-registration of multiple datasets. Furthermore, SWITCH synchronizes labeling reactions to improve probe penetration depth and uniformity of staining. With SWITCH, we performed combinatorial protein expression profiling of the human cortex and also interrogated the geometric structure of the fiber pathways in mouse brains. Such integrated high-dimensional information may accelerate our understanding of biological systems at multiple levels.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Animals
  • Female
  • Humans
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Molecular Imaging / methods*
  • Nerve Fibers, Myelinated / chemistry
  • Proteomics
  • Reducing Agents
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  • Tissue Preservation / methods*

Substances

  • Reducing Agents