Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb 13;428(3):538-553.
doi: 10.1016/j.jmb.2015.11.027. Epub 2015 Dec 4.

A Balance Between Inhibitor Binding and Substrate Processing Confers Influenza Drug Resistance

Affiliations

A Balance Between Inhibitor Binding and Substrate Processing Confers Influenza Drug Resistance

Li Jiang et al. J Mol Biol. .

Abstract

The therapeutic benefits of the neuraminidase (NA) inhibitor oseltamivir are dampened by the emergence of drug resistance mutations in influenza A virus (IAV). To investigate the mechanistic features that underlie resistance, we developed an approach to quantify the effects of all possible single-nucleotide substitutions introduced into important regions of NA. We determined the experimental fitness effects of 450 nucleotide mutations encoding positions both surrounding the active site and at more distant sites in an N1 strain of IAV in the presence and absence of oseltamivir. NA mutations previously known to confer oseltamivir resistance in N1 strains, including H275Y and N295S, were adaptive in the presence of drug, indicating that our experimental system captured salient features of real-world selection pressures acting on NA. We identified mutations, including several at position 223, that reduce the apparent affinity for oseltamivir in vitro. Position 223 of NA is located adjacent to a hydrophobic portion of oseltamivir that is chemically distinct from the substrate, making it a hotspot for substitutions that preferentially impact drug binding relative to substrate processing. Furthermore, two NA mutations, K221N and Y276F, each reduce susceptibility to oseltamivir by increasing NA activity without altering drug binding. These results indicate that competitive expansion of IAV in the face of drug pressure is mediated by a balance between inhibitor binding and substrate processing.

Keywords: adaptive; experimental fitness; neuraminidase inhibitor; oseltamivir; systematic mutation.

Similar articles

See all similar articles

Cited by 15 articles

See all "Cited by" articles

Publication types

MeSH terms

LinkOut - more resources

Feedback