How Transcription Networks Evolve and Produce Biological Novelty
- PMID: 26657905
- DOI: 10.1101/sqb.2015.80.027557
How Transcription Networks Evolve and Produce Biological Novelty
Abstract
The rewiring of gene regulatory networks over evolutionary timescales produces changes in the patterns of gene expression and is a major source of diversity among species. Yet the molecular mechanisms underlying evolutionary rewiring are only beginning to be understood. Here, we discuss recent analyses in ascomycete yeasts that have revealed several general principles of network rewiring. Specifically, we discuss how transcription networks can maintain a functional output despite changes in mechanism, how specific types of constraints alter available evolutionary trajectories, and how regulatory rewiring can ultimately lead to phenotypic novelty. We also argue that the structure and "logic" of extant gene regulatory networks can largely be accounted for by constraints that shape their evolutionary trajectories.
Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.
Similar articles
-
How transcription circuits explore alternative architectures while maintaining overall circuit output.Genes Dev. 2017 Jul 15;31(14):1397-1405. doi: 10.1101/gad.303362.117. Genes Dev. 2017. PMID: 28860157 Free PMC article. Review.
-
A functional selection model explains evolutionary robustness despite plasticity in regulatory networks.Mol Syst Biol. 2012;8:619. doi: 10.1038/msb.2012.50. Mol Syst Biol. 2012. PMID: 23089682 Free PMC article.
-
Evolutionary potential of transcription factors for gene regulatory rewiring.Nat Ecol Evol. 2018 Oct;2(10):1633-1643. doi: 10.1038/s41559-018-0651-y. Epub 2018 Sep 10. Nat Ecol Evol. 2018. PMID: 30201966
-
Algebraic connectivity may explain the evolution of gene regulatory networks.J Theor Biol. 2010 Nov 7;267(1):7-14. doi: 10.1016/j.jtbi.2010.07.028. Epub 2010 Aug 1. J Theor Biol. 2010. PMID: 20682325
-
The evolution of gene expression regulatory networks in yeasts.C R Biol. 2011 Aug-Sep;334(8-9):655-61. doi: 10.1016/j.crvi.2011.05.014. Epub 2011 Jul 2. C R Biol. 2011. PMID: 21819947 Review.
Cited by
-
Comparative transcriptomics analysis pipeline for the meta-analysis of phylogenetically divergent datasets (CoRMAP).BMC Bioinformatics. 2022 Oct 7;23(1):415. doi: 10.1186/s12859-022-04972-9. BMC Bioinformatics. 2022. PMID: 36207678 Free PMC article.
-
An incoherent feedforward loop facilitates adaptive tuning of gene expression.Elife. 2018 Apr 5;7:e32323. doi: 10.7554/eLife.32323. Elife. 2018. PMID: 29620523 Free PMC article.
-
Borders of Cis-Regulatory DNA Sequences Preferentially Harbor the Divergent Transcription Factor Binding Motifs in the Human Genome.Front Genet. 2018 Nov 22;9:571. doi: 10.3389/fgene.2018.00571. eCollection 2018. Front Genet. 2018. PMID: 30524473 Free PMC article.
-
Transcription Factors in the Fungus Aspergillus nidulans: Markers of Genetic Innovation, Network Rewiring and Conflict between Genomics and Transcriptomics.J Fungi (Basel). 2021 Jul 25;7(8):600. doi: 10.3390/jof7080600. J Fungi (Basel). 2021. PMID: 34436139 Free PMC article.
-
How transcription circuits explore alternative architectures while maintaining overall circuit output.Genes Dev. 2017 Jul 15;31(14):1397-1405. doi: 10.1101/gad.303362.117. Genes Dev. 2017. PMID: 28860157 Free PMC article. Review.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources